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ABSTRACT

1]

A theoretical model capable of predicting the thermomechanical response of
continuously reinforced metal matrix composite laminates subjected to multiaxial loading
has been developed. A micromechanical model is used in conjunction with nonlinear
lamination theory to determine inelastic laminate response. Matrix viscoplasticity, residual
stresses, and damage to the fiber/matrix interfacial zone are explicitly included in the

model.

The representative cell of the micromechanical model is considered to be in a state
of generalized plane strain, enabling a quasi two-dimensional analysis to be performed.
Constant strain finite elements are formulated with elastic-viscoplastic constitutive
equations. Interfacial debonding is incorporated into the model through interface elements
based on the interfacial debonding theory originally presented by Needleman (1987), and
modified by Tvergaard (1990). Nonlinear interfacial constitutive equations relate

interfacial tractions to displacement discontinuities at the interface.

Theoretical predictions are compared with the results of an experimental program
conducted on silicon carbide/titanium (SiC/Ti) unidirectional, [04], and angle-ply, [145],
tubular specimens. Multiaxial loading included increments of axial tension, compression,
torque, and internal pressure. Loadings were chosen in an effort to distinguish inelastic
deformation due to damage from matrix plasticity and separate time-dependent effects
from time-independent effects. Results show that fiber/matrix debonding is nonuniform
throughout the composite and is a major factor in the effective response. Also, significant

creep behavior occurs at relatively low applied stress levels at room temperature.
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1

CHAPTER
INTRODUCTION

While the range of applications for composite materials is ever increasing, the use
of composite materials is anything but new. Reinforced concrete has been widely used as a
construction material for years. The Israelites used straw to reinforce mud for making
bricks. The Mongols crafted bows from animal tendons, wood and silk bonded together
with an adhesive. Many other examples of man-made composites could be given.
Composite materials also occur naturally in a wide variety of biological tissues. The recent
increase in interest in composite materials is due primarily to the need for materials with

high stiffness to weight ratios, and is fueled by advances in computing technology.

Metal matrix composites (MMC) are currently being considered as candidate
materials for such structural applications as hypersonic flight vehicles, propulsion systems
and missiles. In these types of applications thermomechanical loading is a primary
consideration. For the structural applications enumerated above, the material system will
be required to maintain significant stiffness and strength at elevated temperatures. A
titanium (Ti) matrix reinforced with continuous silicon carbide (SiC) fibers is one type of

MMC under consideration and is the model system that will be used in this study.

SiC/Ti composites exhibit many desirable properties, but because the titanium
matrix is a viscoplastic material, the composite can respond to thermomechanical loads in
a highly nonlinear way. Damage to the fiber/matrix interfacial zone in the form of

debonding and radial microcracking can also cause nonlinear composite response.



1.1 Literature Review

MMQC have been studied for years but over the last four years a large amount of
research has been undertaken in order to obtain a better understanding of the response of
MMC to thermomechanical loading. The following literature review summarizes the most
important work done in the area of inelastic deformation of MMC; it is not intended to be

comprehensive.

1.1.1 Plasticity

Because titanium is an elastic-viscoplastic material, it is necessary to consider
creep as well as plasticity when analyzing the thermomechanical response of titanium
matrix composites. While creep behavior is not associated with classical plasticity, unified
viscoplastic models attempt to describe both time dependent and independent responses
through a single model. Thus, related work done in the area of creep responsc is also

included in this section.

Teply (1984) developed the periodic hexagonal array (PHA) model for the
plasticity analysis of MMC based on a triangular representative volume element.
Piecewise uniform fields were introduced to obtain estimates of local instantaneous fields.
Dvorak and Teply (1985) and Teply and Dvorak (1988) exercised the model by
subdividing the representative volume element into finite elements. Both displacement
and equilibrium approaches were used to obtain upper and lower bounds on instantaneous

moduli of elastoplastic composites.

Dvorak, et al. (1988 and 1990) conducted an extensive combined experimental/
theoretical study of the elastoplastic response of a boron/aluminum composite.

Experiments were performed on axially reinforced [0] and fiberless tubular specimens by



applying increments of axial load, torque, and internal pressure. Dvorak and co-workers
were able to plot the initial yield locus and track the movement of the current yield
surface. The experimental program confirmed that the composite yield surface, like the
matrix yield surface, must translate in the direction of the applied stress increment. Initial
and subsequent yield surfaces were predicted using the periodic hexagonal array (PHA)
model (Teply, 1984), bimodal plasticity theory (Dvorak, 1991), and a modified Mori-
Tanaka scheme (Mori and Tanaka, 1973 and Benveniste, 1987). These predictions were
compared to the experimental results. Dvorak (1991) provides a summary of the state of
the art in plasticity theories for fibrous composite materials, extensive references, and
summarizes the experimental results discussed above. Only the PHA model, with it’s
reliance on finite element analysis, was able to quantitatively predict the size and location
of the current yield surface under a complex incremental load path. The interfacial bond
between boron and aluminum is strong and no damage was observed experimentally until
a very large number of load increments had been applied to the tube. Even then, the
researchers were unable to conclusively determine that damage had occurred. Damage

was not considered in any of the above analyses.

Aboudi (1987a and 1991) has incorporated the viscoplastic theory of Bodner and
Partom (1975) and (1987) into the method of cells micromechanical model to predict
inelastic composite response due to matrix plasticity. The Bodner-Partom viscoplasticity
theory describes the material behavior with five parameters. Either isotropic or anisotropic
hardening can be considered. The theory is a unified viscoplasticity theory in that no yield
criterion is used. In order to predict initial yield surfaces with the method of cells, Pindera
and Aboudi (1988) have included the Mises yield criterion in the model. Aboudi (1991)
has demonstrated the versatility and accuracy of the method of cells through correlation

with experimental data.



MMC are known to exhibit viscoplastic response, particularly at elevated
temperatures (Amold, et al., 1992). Numerous theories have been developed to describe
the viscoplastic response of initially isotropic metallic materials. Freed and Walker (1991)
provide a representative bibliography of work done in the field of viscoplasticity of
initially isotropic metallic materials prior to presenting their own viscoplastic theory based
on thermodynamics. In order to predict the viscoplastic response of MMC it is necessary
to use a model that allows the matrix to be described by viscoplastic constitutive

equations.

Eggleston and Krempl (1992) observed that creep of [90] SiC/Ti at elevated
temperature was generally faster than that of the monolithic titanium alloy. They used the
unified viscoplasticity theory based on overstress (VBO) (Majors and Krempl, 1991) to
model the matrix response. Both perfect and weak fiber/matrix bonding were considered
using a finite element model of a repeating unit cell. They concluded that debonding had

occurred during the experiments, and had increased the composite creep rate.

1.1.2 Damage

Long before the current interest in damage to MMC, Adams (1974) considered the
transverse tensile loading of a unidirectional composite using a square repeating cell finite
clement model. The plane strain analysis included matrix plasticity and thermal residual
stresses. A finite element scheme was used whereby once an element reached its ultimate
strength it was removed from the analysis by setting its material properties equal to zero.
A degraded fiber/matrix interface was modelled by reducing the strength of the layer of
matrix elements immediately adjacent to the interface. Numerical results indicated that a
crack initiates at the interface, propagates partially around the fiber and then across the

matrix.



While damage mechanics has been studied for some time, until quite recently
imperfections in MMC have commonly been neglected. Benveniste (1985) discussed
fundamental concepts in the theory of elasticity of composite materials in the presence of
displacement discontinuities at constituent interfaces. Representative volume averages
were redefined, and average stress and strain fields were reconsidered under these new
definitions. The dual average stress, average strain approach taken yields the result that the

effective stiffness tensor is not necessarily the inverse of the effective compliance tensor.

Damage to the fiber/matrix interfacial zone of a MMC has recently been
discovered to have significant, deleterious effects on the overall composite response and
has been the subject of much current study. Damage, in the form of interfacial debonding,
in a titanium alloy matrix reinforced with silicon carbide fibers was first experimentally
observed and reported by Johnson, et al. (1990). The experimental study involved
applying tensile loading to five different laminates, most containing off-axis plies. Bond
failure was observed as a separation between the fiber and matrix in off-axis plies using
the edge replica technique. For a [90g] specimen the initial nonlinearity (knee) in the
stress-strain response occurred at the far field stress of 23 ksi; subsequent load cycles
produced a knee at the stress of 16 ksi. Edge replicas taken under load revealed that the
knee corresponded with fiber/matrix separation, not plasticity. Replicas taken after the
removal of the load revealed no separation. The authors postulated that the initial knee
corresponded to the actual breaking of the fiber/matrix bond, whereas the knee observed in
subsequent cycles was associated with overcoming the thermal residual stresses created in

the fabrication process.

In a three part series of papers, Benveniste, et al. (1989, 1991) and Chen, et al.

(1990) developed a micromechanical model for predicting stress fields and effective



thermoelastic properties of composites with coated fibers. In the first paper (Benveniste, et
al., 1989), the authors use a variant of Benveniste's (1987) restatement of the Mori-Tanaka
method to evaluate local fields and overall thermomechanical properties of composites
reinforced with coated fibers or particles. Local fields in a coated inclusion are
approximated by those found when the coated inclusion is embedded in an unbounded
matrix material subjected to the average Stresses (or strains) at infinity. This approach
allows local fields in the inclusion, coating, and adjacent matrix to be evaluated by using
the solution of a single coated inclusion in an infinite matrix. The assumed microstructure
in the model is that the matrix phase is continuous. In the application of the model, the
fiber and coating constituents are restricted to that of a coating encapsulating a fiber or
particle. All constituents are restricted to being isotropic. The second paper (Chen, et al.,
1990) extended the model to include cylindrically orthotropic fibers and transversely
isotropic coatings and matrices. The third paper (Benveniste, et al., 1991) attempted to
provide a framework for computation of the effective thermomechanical moduli of
composites reinforced with curvilinearly anisotropic, coated inclusions. It also

analytically established the diagonal symmetry of the predicted stiffness tensor.

An aluminum matrix reinforced by unidirectional silicon carbide fibers subjected
to transverse tension was studied by Wisnom (1990). The effects of fiber spacing, fiber
packing geometry, thermal residual stresses, interfacial strength, and matrix material
properties were evaluated with respect to the transverse tensile strength. A generalized
plane strain finite element analysis was implemented using a repeating cell model.
Rectangular, diamond and single ply microstructures were considered. The Mises yield
criterion was used and isotropic hardening assumed for the matrix. Interface elements
were formulated to model the fiber/matrix interface as brittle. Perfect bonding was

assumed to exist until a state of stress was reached when the interface failed. Compressive



interface failure and frictional slip were not considered. A quadratic interaction equation

was used for the case where both tensile and shear stresses were significant.
(o/of)2+ (1:/'cf)2 =1 (1.1)

o and 7 are the normal and shear stresses across the interface, and oyand Tgare the failure
stresses for the interface in pure tension and shear, respectively. Of all the parameters
studied, the interfacial strengths, oy and 17, were found to have the largest impact on the
transverse composite strength. Also, thermal residual stresses were seen to be beneficial
due to the compressive radial stress components at the interface. It was noted that residual
circumferential stresses in the matrix were tensile. The aluminum matrix yielded during

processing.

The effects of cracking and imperfect bonding in metal matrix composites has
been incorporated in the micromechanical method of cells (Aboudi, 1991) by Aboudi
(1987b, 1988, and 1989). The effective stress-strain response of MMC containing a
doubly periodic array of cracks was predicted by Aboudi (1987b). The effect of cracking
was incorporated by adopting a second order expansion of the displacement field which
satisfies equilibrium as well as traction and displacement continuity. Imperfect bonding
between the fiber and matrix was incorporated into the method of cells (Aboudi, 1988)
through the flexible interface model of Jones and Whittier (1967). Interfacial decohesion
was modelled by two parameters that represent displacement discontinuity at the interface
in the normal and tangential directions. The derived constitutive equations yield closed
form expressions for the effective elastic moduli. The equations were readily implemented
for determining the thermomechanical response of viscoplastic MMC. The normal and
tangential bonding parameters represent a thin elastic film between the fiber and matrix.

Parameter values of zero correspond with perfect bonding, while as parameter values



approach infinity the condition of no bond is approached. Herakovich and Hidde (1992)
showed that effective elastic moduli are degraded asymptotically, so it is possible to

simulate the no bond, or totally debonded condition, using finite bonding parameters.

Aboudi (1989) presented closed form constitutive equations, based on the method
of cells, for predicting the response of debonding, continuous fiber composites. An
interfacial failure criterion based upon the cohesive strength of the interface was used.
Frictional sliding occurs after interfacial shear failure if there is compression present at the
interface. The model assumes perfect bonding until a critical shear stress has been
reached, above which the fiber and matrix are allowed to slide along the interface. Sliding
is governed by the frictional force, which is dependent on the coefficient of friction. The
critical interfacial shear stress is a function of the normal interfacial stresses. Compressive
normal stresses increase the bond strength, while tensile normal stresses reduce it. The
effect of decohesion on effective composite response, initial yield surfaces, and strength

envelopes was shown for a SiC/Ti composite.

Effective elastic properties and thermal expansion coefficients of unidirectional
composites with imperfect interface conditions were evaluated by Hashin (1990) using the
three-phase model (Christensen and Lo, 1979). The imperfect interface was treated as an
interphase, and defined in terms of spring type constants relating interface displacement

discontinuities (jumps) to tractions.

= ¢! = D,lu,l

1P = 1™ =D [u] (1.2)

= z(m — -
1 =1 = Dy luy)



Where n, 1, and b denote a right handed coordinate system with n normal to the interface
and b in the direction of the fiber. [ ] denotes a jump discontinuity, and Dy, D,, Dy, are
spring constant type material parameters which have units of stress divided by length. An
equivalent fiber concept was used to simplify the evaluation of effective axisymmetric
elastic properties, axial shear modulus, and thermal coefficients, but a more complex

analysis was required for the effective transverse shear modulus.

Achenbach and Zhu (1990) also assumed traction continuity at the fiber/matrix
interface and allow for displacement dicontinuity in the interphase region. Again, tractions
were assumed to be proportional to the corresponding displacement discontinuities. The
transverse response of unidirectional composites was investigated using two different
hexagonal arrays of fibers to account for two different fiber packing sequences. Symmetry
considerations reduced the region that must be analyzed to a trapezoid and the boundary
clement method was used to solve the numerical problem. In a later paper Zhu and
Achenbach (1991) included the effects of radial matrix cracks and interphase failure on
transverse response. Interphase disbonds and radial matrix cracks were assumed to have
the same periodicity as the fiber array. The interphase was modelled by radial and

circumferential springs. A strain-energy density criterion was used for interphase failure.

Here strain energy is given by:
o 1%
U= s +5— (1.3)
2k,  2kg

Where U is the strain energy per interface area and k, kg denote the radial and
circumferential interfacial stiffnesses, respectively. Disbond occurs if the strain energy
exceeds a critical value. Radial matrix cracks are initiated using a tensile circumferential
stress criterion and crack propagation is governed by fracture toughness. For a large

critical interphase strain energy or a weak matrix, radial matrix cracking was predicted to
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occur before interphase debonding. For a small value of critical interphase strain energy or
a strong matrix, interphase failure was predicted to occur before radial matrix cracking

took place.

Nimmer (1990) developed a very simple model for unidirectional MMC with
weak interfaces based on the presence of thermal residual stresses. A square cell
containing a square fiber subcell and two rectangular matrix subcells was used to
approximate a square array of fibers reinforcing a metal matrix. For simplicity, the model
assumes Poisson’s ratio for both fiber and matrix are zero. Thermal residual stresses
created in the cool-down process during fabrication arise due to the mismatch in
coefficients of thermal expansion between the fiber and matrix constituents. In the MMC
under consideration, the coefficient of thermal expansion of the matrix was larger than that
of the fiber. Thus, compressive radial residual stresses were present after processing. No
chemical bond was considered in the analysis, but a mechanical bond created by the
compressive radial residual stresses must be overcome before the interface fails. This is
what is frequently referred to in the literature as a weak bond. When sufficient transverse
tension had been applied to overcome the residual stresses, a knee in the effective
transverse stress-strain response was seen to occur. Results of this simple model were
compared with results from a plane stress finite element analysis also conducted using the
weak interface. Qualitatively, the same type of behavior was predicted by each approach.
The nonlinear finite element analysis was based on a square array of fibers, and contact
elements with the capability to represent Coulombic friction were used to model the fiber/
matrix interface. For compressive transverse loading, the matrix yielded before interfacial

separation occurred at an interface location 90° away from where separation was observed

under transverse tension.
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The finite element micromechanical model discussed above was modified by
Nimmer, et al. (1991) to represent a rectangular array of fibers by inclusion of an aspect
ratio, then compared with experimental results for SiC/Ti-6-4 at three different
temperatures. The constituents were assumed to be isotropic and homogeneous. Fiber
properties were assumed to be linear elastic and temperature independent. The matrix was
assumed to have temperature dependent elastoplastic material properties. The Mises yield
criterion with kinematic hardening was used to represent the plastic response of the
matrix. Time dependent matrix behavior was considered during the fabrication cool-down
process. Large circumferential residual stresses which could lead to radial cracks growing
from the interface in the matrix were predicted to occur. Agreement between predicted and
experimental response was extremely close except in a few instances. The most notable
disagreement occurred during unloading. The model predicted a more distinct knee upon

unloading and permanent strains that were not observed experimentally.

The effect of fiber spacing on interfacial damage in SiC/Ti was studied by MacKay
(1990). Back-scattered scanning electron microscopy techniques were used to study the
condition of the composite in the as-fabricated and heat treated (in argon for 24 hr at 1100
°F) states as well as after 10,000 thermal cycles between 572 and 1022 °F. It was
discovered that microscopic radial cracks existed in the fiber/matrix interface in the as-
fabricated state. These cracks appeared to be the result of tensile thermal residual
circumferential stresses in the matrix at the fiber/matrix interface. The microcracks tended
to occur in the direction of the nearest neighboring fiber and were more prevalent for small
fiber spacing rather than for large fiber spacing. The heat treatment created no further

damage, but thermal cycling did.

The three-phase model (Christensen and Lo, 1979) and a square array generalized



12

plane strain finitc element model were used by Highsmith, et al. (1990) to predict when
fiber/matrix separation occurs in laminated SiC/Ti composites. Linear elastic fiber and
matrix properties were used in both models. Their procedure was to use micromechanics
to predict ply properties, then use lamination theory to determine overall and ply stresses
and strains; finally, the ply stresses were input back into the micromechanical model to
determine local stress and strain fields. Local matrix stresses at points along the interface
as determined from the two models were compared. Thermal residual radial stresses at the
interface are compressive. Separation was assumed to occur when the local radial stress at
the interface is zero. Reasonably good agreement for the transverse response of
unidirectional composites was demonstrated for the two models. The fiber/matrix
separation predicted for transverse loading of a unidirectional composite agreed well with
the experimental observation of a knee in the transverse response of a unidirectional
composite. For laminates however, the predicted overall laminate stresses associated with
fiber/matrix separation were extremely low and thermal residual stresses were nearly
sufficient to cause separation. The experimentally observed knee occurred at a laminate
stress much smaller than the load required to cause local yielding in the absence of fiber/
matrix separation. This separation appeared to alter the local stress field and promote local

matrix yielding.

Lerch and Saltsman (1991) conducted tension tests on seven different SiC/Ti
laminates at room temperature and 1472 °F. Metallography was used to examine
specimens prior to loading, after certain predetermined loads were applied, and after
failure. Fractography was also conducted after failure. Fiber/matrix interfacial debonding,
matrix microcracking, and fiber breakage were all visually observed damage mechanisms.
Matrix plasticity was also detected. Fiber/matrix debonding was determined to be the most

prevalent damage mechanism for laminates containing off-axis plies. Through comparison
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of theoretical predictions with experimental data it was determined that some laminates
had sufficiently high tensile thermal residual radial stresses present to cause partial
debonding in the as-fabricated condition. Theoretical predictions from the vanishing fiber
diameter model (Dvorak and Bahei-El-Din, 1982 and Bahei-E!l-Din and Dvorak, 1982)
were compared with the experimental results. Debonding was simulated in the model by
artificially reducing the fiber modulus to 3% of its original value at the stress when the
knee in the response was experimentally observed. Reasonably good agreement between
theory and experiment was obtained for the longitudinal stress-longitudinal strain
response of [0g], [90g], and [0/90], laminates, but the longitudinal stress-transverse strain

predictions did not correlate well with the experimental data.

An attempt to distinguish the inelastic deformation of a SiC/Ti composite due to
damage from matrix plasticity was made by Majumdar and Newaz (1991, 1992a, 1992b)
and Majumdar, et al. (1992) for tensile loaded unidirectional [0] and [90] specimens. To
this end the authors used key experiments conducted at room and elevated temperature as
well as exhaustive microstructural examinations. Results showed that the inelastic
deformation of a [0] composite was primarily associated with matrix plasticity. The
response of [90] composites subjected to tensile loading was separated into three distinct
regions. Initially, an elastic response occurred. The slope of the stress-strain curve was
then decreased and finally the stress remained constant with increasing strain. The
degraded response in the second region was attributed to damage to the fiber/matrix
interfacial zone, primarily in the form of debonding, but also due in part to radial cracking.
The unloading stiffness was observed to be much reduced from the initial loading
stiffness. Only a very small permanent strain was present upon complete unloading. While
both matrix plasticity and further damage occurred in the third region, matrix plasticity

was the dominant feature. The authors compared their experimental results with
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predictions from three micromechanical models. For theoretical predictions of tests
conducted at room temperature, zero interfacial strength was used and reasonably good
correlation with experimental data was found. The authors suggested, however, that at

clevated temperature there may be a bond strength associated with the interface.

The stiffness reduction of a unidirectional composite containing interfacial cracks
under longitudinal shear loading was examined by Teng (1992). The composite cylinder
assemblage (CCA) model (Hashin and Rosen, 1964 and Hashin, 1972) was employed to
predict the shear moduli of a composite weakened by similar cracks along the entire
length of the fiber, located symmetrically on either side of the fiber (180° apart). The fiber
and matrix were taken to be homogeneous, isotropic, and linearly elastic. Due to the
presence of the uniformly distributed interfacial cracks, the composite could no longer be
considered transversely isotropic as in the perfectly bonded case. Thus, two effective
longitudinal shear moduli exist. The resulting mixed boundary value problems led to
systems of dual series equations, which were reduced to Fredholm integral equations of
the first kind having a logarithmically singular kernel. The unknown functions were the
shear tractions along the uncracked portions of the interface. Nondimensionalized results

were presented for various fiber volume fractions and constituent shear modulus ratios.

McGee and Herakovich (1992) incorporated the interfacial constitutive equations
developed by Needleman (1987a, 1987b, 1990a, 1990b, 1992) into the method of cells.
These interfacial constitutive equations will be presented in Chapter 2 as they are an
integral part of the present work. In order 1o incorporate these interfacial traction-
displacement relations which are point-wise in nature into the method of cells, it was
necessary to transform them into average quantities. This transformation must also

account for fiber geometry differences between a round fiber and the square fiber subcell
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used in the method of cells. A linear elastic square repeating cell micromechanics model

was implemented using finite element analysis to determine a suitable transformation.

1.2 Problem Definition

Silicon carbide/titanium (SiC/Ti) composites are a type of MMC that is currently
under consideration for various high temperature applications. These composites are
typically fabricated at high temperatures. Due to the mismatch in coefficient of thermal
expansion between SiC and Ti, residual thermal stresses are created during the cool-down
process. Many of the SiC fibers currently in use have one or more Carbon/SiC coatings
deposited on them before consolidation. This is done in an attempt to keep the reaction
zone at the fiber/matrix interface from migrating into the fiber. The presence of these
coatings can lead to a very poor bond between the fiber and matrix, thus making the
debonding phenomenon very important in determining the inelastic deformation of this

type of MMC.

Other damage mechanisms are also known to exist in MMC, namely radial matrix
cracking and fiber breakage. While these two damage mechanisms are important, they
appear to effect strength more than stiffness, whereas the focus of this study is on stiffness
rather than strength. That is not to imply that damage induced strength degradation is not
an important consideration in the design of MMC; clearly it is. However, strength
degradation is not included in the scope of the current work. Thus, the focus will be on

fiber/matrix interfacial debonding.

Metallic matrices are known to be elastic-viscoplastic in nature. In the present
context, the term viscoplasticity refers to the path-dependent, time-dependent response

associated with the dislocations of a particular alloy. It is noted that the thermomechanical
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properties of common metallic matrices are generally temperature dependent as well.

The preceding literature review described many attempts to predict the inelastic
response of damaged MMC for tensile loading applied transverse to the fibers, and one
attempt to predict the inelastic response for axial shear loading. A few models have been
presented that are capable of predicting inelastic response for general loading, but
comparisons with experimental data were not made. To date, there is a scarcity of
experimental results from any type of tests on MMC other than tension or compression. A
relatively simple way to apply a general loading to a material is to use tubular specimens;
this allows axial, torsional, internal pressure, and thermal loads to be applied either
proportionally or in increments. However, MMC tubes are very difficult to fabricate and
are therefore expensive. A limited number of [04] and [£45]g SiC/Ti tubes was available

for the present study.

The goal of the current study is to develop an experimentally verified model
capable of predicting the thermomechanical response of continuously reinforced metal
matrix composites subjected to multiaxial loads in the presence of damage. The model is
based on micromechanics and employs nonlinear lamination theory to determine the
inelastic deformation of laminates. Constitutive relations for each lamina are determined
from a micromechanics analysis that is performed numerically using the finite element

method.

The representative cell of the micromechanical model is considered to be in a state
of generalized plane strain, enabling a quasi two-dimensional analysis to be performed.
Constant strain triangular elements are formulated with elastic-viscoplastic constitutive
equations. Interfacial debonding is incorporated into the model through interface elements

that use nonlinear interfacial traction-displacement relations. Debonding can occur normal



17
to the interface and in any tangential direction.

Theoretical predictions are compared with the results of an experimental program
conducted on Sinl"i tubular specimens. Multiaxial loadings included increments of axial
tension, compression, torque, and internal pressure. Loadings were chosen in an effort to
distinguish inelastic deformation due to damage from matrix plasticity, and separate time

dependent effects from time independent effects.



CHAPTER 2
MODEL DEVELOPMENT

M

A model to predict the inelastic response of unidirectional and laminated MMC to
thermomechanical loading is developed in the present chapter. In laminate analysis it is
necessary to be able to describe the constitutive behavior of each lamina. This is done
using micromechanics. Hence, the ingredients for the micromechanical model are
presented first. The laminate analysis procedure is then developed. The implementation of

the model is described in Chapter 3.

2.1 Micromechanics

Consider a composite with continuous fiber reinforcement aligned in the x- or 1-
direction. The use of micromechanics dictates that constituent properties and geometries
are explicitly considered. To do this it is necessary to replace the complex microstructure
of the composite with a representative volume element (RVE). The use of an RVE
presumes that the fibers are uniformly dispersed (statistically homogeneous) throughout
the matrix phase. A sufficient quantity of both material phases must be used such that the
response of the RVE is representative of the composite material at large. If the fibers are
arranged in a doubly periodic rectangular array as shown in Fig. 2.1 it is sufficient to
analyze one unit cell that contains a single fiber embedded in matrix material, provided the
appropriate boundary conditions are applied. These boundary conditions will be discussed
in Chapter 3. The present model treats the fibers as linear elastic and the matrix as elastic-

viscoplastic. Fiber/matrix interfacial constitutive relations are used to model debonding.
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2.1.1 Viscoplastic Model

Classical plasticity theory is rate independent. Time dependency is introduced
through phenomenologically developed creep models. Thus, plasticity and creep are
independent in the classical theory. Viscoplastic constitutive equations attempt to
represent the interaction between plasticity and creep. The distinguishing feature between
viscoplasticity and plasticity is that viscoplasticity admits states both inside and outside
the yield surface, governed by the Kinetic equation of state, whereas plasticity admits only
states inside and on the yield surface, governed by the consistency equation.
Consequently, the plastic strain rate is continuous from the elastic domain across the yield
surface and into the inelastic domain of viscoplastic response (Freed, et al., 1993). Unified
theories of viscoplasticity are based on the concept of considering both elastic and
inelastic deformations to be generally nonzero at all stages of loading; therefore, no yield
criterion is required. From a practical standpoint this greatly simplifies the analysis
because one does not have to consider different criteria for loading elastically,

inelastically, or unloading. Inelastic strains include time independent and time dependent
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components.

The elastic-viscoplastic constitutive model of Bodner and Partom (1975, and
Bodner, 1987) is used in the current model and will now be presented. The total strain rate

is assumed to be separable into elastic and inelastic components

él'j = é.'+ é‘ej‘ (2.1)

ij

where the dot represents time differentiation. The elastic component is given by the time

derivative of Hooke's law and the strain-displacement relationship
. 1 (0u; O
&= 3 (‘a‘: * 3 ) @2)
/] [

The Prandtl-Reuss flow law is assumed to apply to the inelastic strain rate components.

The stress deviators, s;; are given by
1
55 =0, 30“8,.1. (2.9)

where 5ij is the Kronecker delta and repeated subscripts imply summation over 1,2, and 3.

An expression for A can be found by squaring egn. (2.3)

A? = DBYJ, (2.5)
where J, is the second invariant of the deviatoric stress

by = s (2.6)
and Dz"’ is the second invariant of the plastic strain rate

Dg' = getet! VX))
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The kinetic equation (i.e., an equation of state) governs the inelastic deformations and is

taken to be

Df = D(’,exp[— (5—; )l( n: ! )] (2.8)

and Z is assumed to have the form
Z=2Z+(Zy-Z)expl-m(W,/Z,)) 2.9)
where Z; and Z, are material parameters and W), is the plastic work.

Altogether there are five material parameters in the model. The parameter Zg is
associated with the yield stress of the material in simple tension while Z; is proportional to
the ultimate stress. The material parameter m determines the work-hardening of the
material and the rate sensitivity is controlled by the parameter 2. The constant D defines
the limiting strain rate for the material. These parameters are often determined from two

simple tension tests conducted at different strain rates.

2.1.2 Damage Model

As indicated by the literature review, damage to the fiber/matrix interface has a
significant effect on the response of MMC. The current section outlines the interfacial
debonding model of Needleman (1987a) and an alternative model developed by Tvergaard

(1990).

Debonding of the fiber/matrix interface plays a key role in limiting the ductility of
a composite. Needleman (19874, 1987b, 1990a, 1990b, 1992) has developed a cohesive
zone model that describes the process of void nucleation from initial debonding through

complete decohesion. The model provides independent constitutive relations for the
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interface. With increasing interfacial separation the traction across the interface increases
to a maximum, decreases, then vanishes so that complete decohesion occurs. Since the
mechanical response of the interface is specified in terms of both a critical strength and the
work of separation per unit area, dimensional considerations introduce a characteristic

length.

Consider an interface supporting a traction field T which in general has normal and
shear components. Two material points, initially on opposite sides of the interface, are
considered and the interfacial traction is taken to depend only on the displacement

difference Au across the interface. At each point of the interface

u, = n-Au u, =1t-Au u, = b-Au (2.10)
and
T.=n-T T,=tT T,=b-T (2.11)

where n, ¢, and b form a right-hand coordinate system as shown in Fig. 2.2. Positive uy
t

lntcrfacé
Fiber

Figure 2.2: Interface Coordinate System

corresponds to increasing interfacial separation, y; is tangent to the interface, and uy is
parallel to the fiber direction. The mechanical response is described in terms of a potential

¢(umupub):
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O (4, Up Uy) = —J’ (T.du,+ Tdu, + Tyduy) (2.12)
[ ]

A specific form frequently used (Needleman, 1987a, 1987b, 1990a) is

0 (4, u,u,) = c 8[‘ 2(1-4-;4+ 1u)

+§a(v2+w2)(l—2u+u) ] (2.13)

u, Uy

u,
u-_-‘g V=-g W=-g

for u, < 8. Here o, is the tensile strength of an interface undergoing a purely normal
separation, 8 is a characteristic length, and « specifies the interfacial shear to normal
strength ratio. When u,, > 8, ¢ = {sep, Where Ogep is the work of separation. The work of
separation serves to define the characteristic length 8. Thus, even though the characteristic
length may not correspond to a physical length, it is a measurable quantity because the
work of separation can be determined experimentally. The interfacial tractions are

obtained by differentiation of the potential function, eqgn. (2.13), to give

T, -—-2—70 (u(l- “u+ud) ra(V+wd) (u-1)] (2.14)
7,= -Jo,av(1-2usid) 2.15)
T, = —%Zooaw(l -2u+u?) (2.16)

Relative shearing across the interface leads to shear tractions, but the dependence of these
tractions on u, and u, is linear. The traction magnitudes increase monotonically for

negative u,,.

Other forms of the potential have been presented, including a combined
trigonometric-exponential (Needleman, 1990b and 1992) and a double exponential

(Needleman, 1992). Little is known about the validity of these specific interfacial



constitutive relations. The most detailed information comes from Rose, et al. (1981 and
1983), which indicates a universal exponential form of the traction-separation relation for

coherent atomistically sharp interfaces.

The above model describes debonding by normal separation only. Tvergaard
(1990, 1991, and 1993) proposed a model that describes debonding by tangential
scparation as well as normal scparation. The model was implemented in an axisymmetric
unit cell analysis, therefore it was only necessary to describe debonding in the normal, »
and tangential, b directions. For the case of purely normal separation the model reduces to
Needleman'’s (1987a) model. In general no potential exists for Tvergaard’s (1990)
alternative debonding model. The cohesive zone formulation is viewed as a
phenomenological model, which represents the average effect of the debonding
mechanisms. Once total debonding has occurred at a point along the interface, tangential

tractions are accounted for by Coulombic friction.

The debonding model used in the present study is an extension of the Tvergaard
alternative to the Needleman model. Here, interfacial displacements and tractions must
also be included in the tangential, ¢ direction, therefore a three dimensional analysis is

required.

The first step in the development of the model is to assume that the condition of the

bond can be described by one nondimensionalized parameter, A.

2.17)

\ - { Jw/8)%+ (u,/8,)*  foru, <0
J@/8)+ (u/8)2+ (u,/8,)%  foru,>0

Normal compressive tractions are considered not to be detrimental to the interface. In the
most general case there are three characteristic lengths, 8, O, and 3. Bond failure is

represented by A=1. For A>1, the interface is only capable of transmitting compressive



normal tractions and frictional tangential tractions. A function F(A) is chosen as
F 27 2
(A) = o, (A2 24+ 1) (2.18)

For monotonically increasing loads the current value of A is always the maximum value,
Amax- However, for unloading and reloading conditions the current value of A can be less
than the maximum value, A,,,,, that may have occurred at some previous time in the load
history. In order to prevent the interface from being self-repairing, which is physically
unrealistic, it is necessary to set the current value of A equal to the current maximum,

A=A ay, in eqn. (2.18). For A4, < 1, the interfacial tractions are then given by

10% (u,/ fi 0

- ( 0" (u,/8,) oru,s 2.19)
F(,,) (u,/3) foru,>0
T, = aF (A,,,) (4/8) (2.20)
T, = aF () (4,/8,) @.21)

The normal traction, T,, has been made much stiffer than in Tvergaard (1990) for normal

compression to minimize interpenetration of the phases.

For A, 2 1, which signifies loading after the interface has failed and is only
capable of transmitting compressive and frictional tractions, the interfacial tractions are

given by

r - { 10° (4,/8,) foru,<0 (2.22)

0 foru,>0

—sgn (du,) U1, for|7| 2p|TJandu, <0
T, = { -4uT, (u/8)  for|T| <p|T,|andu <O (2.23)

0 foru,>0



—4uT, (4,/8,) for|T,| <u|Tjandu, <0 (2.249)

—sgn (du, ) uT, for|Ty| 2p|T, |andu, <0
T. = {
0 foru,>0

where p is the coefficient of kinetic friction and du,, du, are the current tangential

interfacial displacement increments.

To demonstrate the interfacial constitutive relations four interfacial displacement
loading cases are shown in Fig. 2.3 and 2.4. The normal and tangential displacement
components presented in Table 2.1 are applied to a material point along an interface. Case
#1 shown in Fig. 2.3a is first tensile, then comprcésivc normal displacement loading. For
increasing normal separation the normal traction, T,, increases to a maximum then
decreases to zero when bond failure occurs at A=1 (4,/0=1 in this case). After bond failure
only compressive tractions may be transmitted through the interface. The response to

negative (compressive) normal displacements is quite stiff to minimize interpenetration of

Table 2.1: Displacement Loading

: 'égménf ; 'fﬁormal Displacement
AB — 05120
BC 120-0 0
CD 0--30 0
1 AB 0 0->120
2 [ BC 0 1200
T oo 0 0—-30
AB 0->50 0
BC 50-0 0
CD 0120 0
AB 0—S0 0-50
BC 500 50
CD 0—120 50
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the fiber and matrix. Since no tangential displacements are applied the tangential traction,
T,, remains zero throughout the displacement history. Case #2 (Fig. 2.3b) is tangential
displacement loading. The constitutive relations are similar for positive and negative
tangential displacements. Once bond failure occurs, at u/3=1 in this case, no tangential
tractions are present because there are no normal compressive tractions present. Case #3
(Fig. 2.4a) is tensile loading, unloading then reloading. Both unloading and reloading
(below the previous maximum displacement) responses are linear, which demonstrates the
use of A,gy in eqn. (2.21). Case #4 (Fig. 2.4b) is similar to Case #3 except tangential
displacements are also applied. The maximum normal traction is reduced due to the
interaction with tangential loading. Once the tangential displacement is held constant at
point B the tangential traction remains constant for loading segment BC then decreases to

zero in loading segment CD as the bond fails due to normal separation.

2.2 Laminate Analysis

Elastic as well as inelastic behavior of laminated composites can be predicted
using nonlinear lamination theory (Hidde and Herakovich, 1992). The assumptions
required for the nonlinear theory are the same as those for classical lamination theory

(CLT):

(1) The laminae are assumed to be thin such that each lamina is in a state of plane
stress (i€, Oz = Tz =Ty, = 0).

(2) The Kirchhoff plate assumptions apply to the laminate. In particular,
(a) a line originally straight and perpendicular to the midplane of the
laminate remains straight and perpendicular (ie, Yx; = Yyz = 0
(b) normals to the midplane do not change length (ie, €;, = 0).

(3) Laminae are perfectly bonded.

The development of CLT is found in many composite mechanics textbooks (such as Jones,

1975) thus only the necessary ingredients will be presented here.



The stresses in the £/ ply can be expressed as

k

k - e - k
O On 0 O | |8 86| [&iF
Syl = [ gzz gzz e, e, e (2.25)
% 16 Qza Q Y YI ﬁ;’
or simply
{o}* = [D1*({e} - {e"} - {M])* (2.26)

where {€) denotes the total strains, (€7} denotes the free thermal strains, and (eMEy
represents any nonlinear strains associated with plastic deformation or damage. For any

ply the transformed reduced stiffness is defined:

é,’j = E,‘j— CBCIJ (2.27)

kx]

The transformed stiffness for any ply is determined to be:

[C] = [T]7"(C] [Ty (2.28)
et s 2cs 2 & ¢
- (¢ = cosB)
[T:] =15 ¢* -2s [’ é] =1 st e -cs (s = sin@) (2.29)
—cs cs ct-s? ~2¢s 2¢s 2~ §°

where 0 is the angle measured from the x-axis to the 1-axis as shown in Fig. 2.5. In
general [C] is the stiffness matrix for an orthotropic material. [T¢] and [T,] are the stress
and strain transformation matrices, respectively, associated with transforming quantities in
material principal coordinates (1,2,3) to global coordinates (x,y,z). The notation used for
the laminate and lamina is shown in Fig. 2.5. The global free thermal strains are

determined from
{eT}} = {a}*AT = (11,17 {a} ) AT (2.30)

where {a]; is the thermal expansion of the kth ply in the material principal coordinate

system and AT is a uniform temperature change.
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The nonlinear strains are found from
(M} = (1T {eMy pt (2.31)

and include nonlinear effects due to both damage and plasticity. The nonlinear strains in
material principal coordinates, eV 1, are determined from a micromechanics analysis as

described in Section 2.1.
The total strains in each ply can be related to laminate quantities by
{e}} = {e°} +2*{x} (2.32)

where {€°] is the global midplane strain and {x} is the midplane curvature. At this point it
is convenient to define several quantities. The resultant mechanical forces and moments

acting on a laminate are

I

{N,M} = Iou(l.z)dz (233)

-

The equivalent thermal force and moment resultants are defined as

Laminate

Lamina (fiber direction)

Figure 2.5: Laminate/Lamina Geometry



32

Linear curve
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Actual curve

—
£
Figure 2.6: Nonlinear pseudo-force

i
(NI MT} = j (01 {€7}, (1, 2) dz (2.34)

-"

Nonlinear pseudo-force and moment resultants represent the effects of plasticity and

damage at any given time and are defined to be

H
(NN, MMy = j(é] {eM), (1, 2)dz (2.35)

-H
The term {NNL] is not a physical quantity, it is the difference between the actual resultant
force-strain (N-€) curve and the linear N-€ curve as depicted schematically in Fig. 2.6. A
similar explanation applies to the pseudo-moment resultant. The laminate extensional,

coupling, and bending stiffnesses, respectively, are defined:

"
(A, B,D] = j@ 1,z 1% dz (2.36)

=1t

Substituting the ply stresses, eqn. (2.26), into the resultant force and moment

definitions, eqn. (2.33) and integrating through the thickness of the laminate yields

{N}
{M}

[A] {€°} + IB] {x} - {NT}-{NY} (2.37)
[B] {e°} + (D} {x} - {MT) - (MY}

where eqn. (2.32) has also been used to relate ply strains to laminate strains. Equation

(2.37) can be written in the familiar compact form:
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[?,] i B ,‘i][‘;] 2.38)

where

N
=M+MT+ MM (2.39)

For strain loading, solution of eqn. (2.38) yields the resultant forces and moments.
If resultant forces and moments are applied the ABD matrix must be inverted. The

effective laminate stresses are determined by dividing the resultant forces by the laminate
cross-sectional area.



CHAPTER 3
MODEL IMPLEMENTATION

—_________——-—————-——______———__—_‘-——————————:_-i

The viscoplastic and debonding models discussed in Chapter 2 are implemented
numerically using the finite element method. The analysis of unidirectional composites is
presented first. The method is then extended to laminated composites by employing

nonlincar lamination theory.

Effective stress and strain fields in the unit cell under consideration are determined

in accordance with Benveniste (1985), namely

E‘.j=cjé{j+cmeu-—-j([u]n+[u]n)dS o

T = m

where the sub- and superscripts f and m rcfcr to the fiber and matrix, respectively. Barred
quantities are averages. The lower case ¢ is the constituent volume fraction, V is the total
volume, and § is the fiber/matrix interface. The outward normal to § is denoted by n;. The

jump in displacement across the interface, S is defined to be

[u] = ] -l (3.2)

The surface integral in egn. (3.1) is evaluated numerically using Simpson’s rule and

displacement data from the nodes located along the interface.

3.1 Generalized Plane Strain

Consider a unidirectional composite material with continuous fiber reinforcement.
If the fibers are arranged in a doubly periodic rectangular array as shown in Fig. 2.1 a

single unit cell may be used as the representative volume element. Assume that the
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composite is very long in the x (fiber) direction. Away from the ends, a state of generalized
plane strain (Lekhnitskii, 1981) exists. The stress and strain fields are independent of the x
coordinate. Displacements are allowed in all three coordinate directions. Each
displacement is dependent on y and z coordinates and the displacement in the x direction is
also linearly dependent on the x coordinate. Including the y and z dependence of the x
displacement allows axial shear deformation to occur. In mathematical terms, the strain

components are taken to be (Renieri and Herakovich, 1976):

ou
£u= 5} =f| (ytz)

0
LI

d
=5 =H 00D

3.1
ov d
Yy,=7v+'5vx=f4()”z)
Ju 0
o= 5t 3 =f5002)
au ov

Yo =5y oz =fs (3, 2)
where u, v, w are displacement components in the 1-, 2-, 3-directions, respectively.

Integration of the strain field yields the following displacement field:

u(x,y,2) =x(Ciy+Cyz+Cq) +U (y,2)

2
v(x,y, 2) =x(C4z+C6)—ClJ£2—+V(y,z) (32)

2
W(y.2) =x(~Cyy+Cs) =C% + W (3,2)

where C through C¢ are unknown constants and U, V, and W are unknown functions of y
and z. A similar formulation was used by Adams and Crane (1984) to predict the response

of unidirectional glass/epoxy and graphite/epoxy composites to combined loading.



3.2 Finite Element Formulation

The representative volume element (RVE) shown in Fig. 2.1 is analyzed using the
finite element method. Due to material symmetry it is sufficient to model a quarter of the
RVE. Considering the RVE to be in a state of generalized plane strain permits the use of a
two dimensional model while retaining three dimensional stress and strain fields. Thus,

very general combined thermomechanical loading may be applied.

The finite element analysis is conducted using the commercially available general
purpose ABAQUS finite element code (Hibbitt, Karlsson, and Sorensen, Inc.,1989) which
uses the Newton method to solve a nonlinear system of equations. Both material and
geometric nonlinearities may be considered. User elements may also be defined through

user subroutines, as is done in the current analysis.

The quarter of the RVE to be analyzed is discretized as shown in Fig. 3.1. Of
course any discretization is permissible and the finer the mesh is made, the better the
results will be. The trade-off is that as the mesh is made finer, the run time increases. The
mesh used in this analysis was chosen because it was fairly coarse, with 68 solid elements
and 8 interface elements, and yet still gave reasonably accurate predictions for the
effective elastic properties. The dimensions a and b were determined from the packing
sequence of the composite under consideration and thus represent the fiber volume

fraction.

Boundary conditions for thermal, axial, transverse, and axial shear loadings are
also shown in Fig. 3.1. Symmetry dictates that there is no y-displacement along the line
y=0 and that there is no z-displacement along the line z=0. Rigid body motion is prevented

in the x-direction by restraining the origin. Compatibility with the surrounding material
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requires the y- and z-displacements to be constant along the lines y=b and z=aq,
respectively. Loads are applied to the RVE through displacement loading. Axial load is
applied by displacing the common node, which will be discussed in the following section,
in the x-direction. Transverse load is applied by displacing the line y=b in the y-direction.
Axial shear loading is simulated by displacing the line y=b in the x-direction and
constraining the x-displacement of the line y=0. Thermal loading is applied by subjecting

the entire mesh to a uniform temperature change.

Transverse shear loading can be applied to the quarter fiber model, but different
boundary conditions are required. Antisymmetric boundary conditions must be used along
the lines y=0 and z=0 in place of the symmetric boundary conditions previously

discussed. Compatibility with the surrounding material requires that the edges located at

Jz,w
? Aw=0

a v=( Av=0

2,y,v

y
w=0
l,x,u/ L b
>

Figure 3.1: Finite Element Mesh
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y=b and z=a remain straight. Transverse shear loading is simulated by displacing the edge
z=a in the y-direction. Due to the different boundary conditions required for transverse
shear loading it can not be combined with the other types of loading discussed. Transverse
shear loading is not required for the analysis of laminates due to the assumption of plane
stress used in lamination theory. Thus transverse shear loading will not be considered in

the remainder of this work.

3.2.1 Solid Elements

Constant strain triangular solid elements are formulated in Appendix A for the
condition of generalized plane strain. Both the fiber and matrix are assumed to be
isotropic. The elastic-viscoplastic constitutive relations of Bodner-Partom presented in
Chapter 2 are used to describe the material behavior. The three corner nodes of each
element have three degrees of freedom. The novelty of these elements is that each element
has an additional node. Elements in the mesh must be numbered such that the last node
specified for each element is the ‘common node’ located at the centroid of the RVE. The
only degree of freedom associated with the common node is in the x-direction, therefore

each element is constrained to a constant axial strain.

3.2.2 Interface Elements

Smelser and Becker (1989) developed a user subroutine for interface elements to
be used with the ABAQUS program. The user subroutine is for either plane strain or
axisymmetric problems and uses the interfacial constitutive relations of Needleman
presented in Chapter 2. The interface elements have four nodes, two nodes connect t0

material points on either side of the interface. The element stiffness matrix is defined

KM _ oF"

= — 33
3 (3.3)
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where FV is the force contributed by the element to degree of freedom N and uM is the
displacement at degree of freedom M. The formulation is currently extended to account
for debonding in the normal as well as both tangential directions. The modifed Tvergaard
alternative debonding model presented in Chapter 2 was implemented in lieu of the

Needleman model. The derivation is summarized in Appendix B.

3.4 Laminate Analysis

For the present purposes the current laminate analysis is restricted to thermal and
in-plane mechanical loading of flat symmetric laminates. Therefore no curvatures, {x},
are present and the coupling stiffness, [B], is zero. Thermal loads are applied by specifying
a uniform temperature change over the entire laminate. Any combination of laminate

midplane strains, €y, Eyy, Yxy MaY be applied as the mechanical loading.

The analysis of a laminate is initiated by using the micromechanical model
presented in Sections 2.1, 3.1, and 3.2 10 determine the thermomechanical properties of
the laminae. These properties, along with the loading specifications, are used as input to
the nonlinear lamination theory (NLLT) to determine both laminate and laminae stresses
and strains. The midplane strains and effective laminate stresses are the desired output.
The strains in each lamina are input back into the micromechanical model to determine the
nonlinear strains. Because the strains in the material principal coordinate system arc, in
general, different for each lamina and because the interfacial constitutive relations are
history dependent each lamina in the laminate has its own unit cell associated with it. The
nonlinear strains for the first increment are zero. In all subsequent increments the
nonlinear strains from the previous increment are used. Figure 3.2 presents 8 simplified

schematic of the incremental laminate analysis procedure.
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CHAPTER 4
MODEL PREDICTION

—— T ——————— —

In this chapter predictions from the model discussed in Chapters 2 and 3 are
presented first for unidirectional composites and then for angle-ply laminates. In some
instances predictions based on the method of cells (Aboudi, 1991) are also presented for
comparison. All predictions are for a titanium matrix reinforced with 40% silicon carbide
fibers by volume. The thermomechanical constituent properties used here and for the

remainder of this work are listed in Table 4.1.

Table 4.1: Constituent Properties

| Thermoe

| war® [ama | oo | asd |

ermo-clasic Bodner-Partom

CSiIC | S8 | 025 | 277 0 - - - -
ST | 132 | 036 | 514 [10000] 140 | 170 | 1700 | 7

4.1 Unidirectional Composites

To illustrate the capability of the generalized plane strain model and provide a
baseline for comparisons consider first the case of perfect bonding between fiber and
matrix. Consider also the case of no interfacial bonding. Using the perfect bond and no
bond assumptions provides limiting conditions on the effective response of the composite.
Perfect bonding is achieved by requiring a continuous displacement field across the fiber/
matrix interface. The condition of no interfacial bond is simulated by setting the interfacial
strength, O, equal to zero and the parameter, A, which describes the condition of the bond,

equal to unity.
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The method of cells predictions for no interfacial bond are based on imperfect
bonding using the flexible interface model (Aboudi, 1988). The no bond condition was
approximated by making both normal and tangential bonding parameters quite large R, =

R, =1), this effectively created a cavity in the matrix rather than a debonded inclusion.

4.1.1 Combined Loading

One of the primary goals of this work is to describe the response of MMC
subjected to general loading. Therefore combined loadings as well as uniaxial loads will
be applied to the unit cell model as designated below:

-x: uniaxial loading in the fiber direction

-y: uniaxial loading transverse to the fiber

-xy: axial shear loading

-x-y: combined axial and transverse loading

-x-xy: combined axial and axial shear loading

-y-xy: combined transverse and axial shear loading

-x-y-Xy: combined axial, transverse, and axial shear loading
The reader is reminded that the material principal coordinate system , 2, 3) for the
unidirectional composite considered here corresponds directly with the global coordinate

system (X, y, ), where the 1- and x- directions are in the fiber direction.

Predictions from the unit cell model as well as from the method of cells (Aboudi, :
1991) are shown in Figs. 4.1-4.4, where FE denotes the current finite element unit cell
model and MC denotes the method of cells. The stiffness tensor obtained from the method
of cells has not been transformed to that of a transversely isotropic material because the

unit cell model is not transversely isotropic.

The axial response to the four loading conditions that include axial loads is shown
in Fig. 4.1a for perfect bonding and Fig. 4.1b for no interfacial bond. Excellent agreement

is observed between the two models for both the perfect and no bond cases. The only
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variation between the models occurs for load cases that include transverse loading. The
only significant difference between the axial response of unidirectional composites with a
perfect fiber/matrix bond and those with no bond is when transverse loads are applied. It is
noted that the axial stiffness of the composite, defined by the loading (o # 0, 6;; =0 for
all others) is not represented by the initial slope of the response for load combinations that

include transverse loads due to the presence of the transverse stress 6.

The transverse tensile response is shown in Fig. 4.2 for the load cases that include
wransverse tension. The response of a composite with no bond is very different from that of
a perfectly bonded composite, and in fact, is so large that a different vertical scale is used.
The two models agree quite well for perfect bonding with only relatively small differences
observed in the plastic region. However, for no bond the traction continuity requirements
imposed by the method of cells force the transverse stresses in one matrix subcell to be
equal to those in the fiber subcell, which are zer:o in this case. Hence, a lower stiffness is

predicted.

Figure 4.3 presents the transverse compressive response for those load cases that
include transverse compression. Again, the two models agree well for perfect bonding. On
the other hand, poor agreement is observed for transverse stiffness for the case of no
interfacial bond. In addition to what was just discussed for transverse tensile loading, the
bonding assumptions used here for the method of cells predictions effectively remove the
fiber from the composite, such that it can support no tractions. The unit cell model allows

the fiber to behave like a debonded inclusion and support compressive tractions.

For perfect bonding the unit cell model predicts a slightly stiffer axial shear
response in the elastic region than the method of cells (Fig. 4.4a). In the inelastic region

this difference is magnified. Similar to the transverse tensile response, the method of cells
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predicts a more compliant response than the unit cell model for no bond between the fiber
and matrix (Fig. 4.4b.). In fact, the agreement for simple axial shear loading (-xy) is not

very good for the no bond condition.

4.1.2 Interfacial Parameter Study

The interfacial properties used in the current debonding model (Sect. 2.1) are
related to physical quantities that can, in theory at least, be measured. O, is the maximum
tensile stress that the interface can sustain under simple tension. The shear-to-normal
strength ratio, o, can be found by determining the shear strength of the interface. The
characteristic length, 8, can be calculated from the work of separation, which is the area
under the interfacial stress-strain curve up to complete bond failure. A small value of &
represents a brittle interface, while a large value represents a ductile interface. is simply

the coefficient of friction between the two surfaces of a failed interface.

Actually determining these interfacial properties for real fiber/matrix interfaces
could be quite difficult due to the small size of the fibers. For example, the SCS-6 fiber is
considered to be relatively large and it has a diameter of 0.0057 in. Of course, fiber
coatings and how they are applied to the fiber are extremely important in determining the
interfacial properties. In light of this, the interfacial properties are treated as parameters
that describe mechanical response of the interfuce. The characteristic lengths are assumed

to be equal, 8, = §; = §,=0.

Figures 4.5 through 4.8 present the results of a parametric study undertaken to
determine the effects of the interfacial properties on the response of a unidirectional
composite. Axial, transverse tensile, transverse compressive, and axial shear loadings are

considered individually for this parametric study. As previously mentioned, the perfect
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bond and no bond conditions serve as extreme conditions for a composite with a

debonding interface.

The axial response is shown to be unaffected by the condition of the fiber/matrix
interface in Fig. 4.5a. Thus, the effect of interfacial properties on the axial response need

not be considered further.

The effect that the interfacial properties have on the transverse compressive
response is shown in Fig. 4.5b. While compression normal to an interface is not
detrimental to the condition of the bond, the transverse compressive loading considered
here creates significant tangential interfacial displacements that do cause debonding. The
effective response of a unidirectional composite subjected to transverse compressive

loading is quite similar to that for loading which is discussed at length in the following

paragraph.

The effect of the interfacial strength, G, on both the transverse tensile and axial
shear responses is shown in Fig. 4.6. As expected, the larger the interfacial strength
parameter, the closer the initial debonding response is to that of a composite with perfect
bonding. After the interface completely debonds the response must be the same as that of
a composite with no interfacial bond, and it is. The interesting feature displayed for both
transverse tensile and axial shear responses is the unstable response, or falling stress-strain
curve, that occurs for the larger bond. The beginning of the unstable response corresponds
to the interfacial displacement where the maximum interfacial traction occurs (u/8 = 0.33
in Fig. 2.3a). From this point continued strain increments result in less traction required
for additional interfacial displacements. The required traction per unit strain increment

continues to decrease as the separation zone increases until final separation is attained.
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The interfacial strength ratio, a, is used to define the interfacial shear strength in
terms of the interfacial strength, 6. As shown in Fig. 4.7, the interfacial strength ratio has
a similar effect on the effective response of unidirectional composites as the interfacial
strength. The effective response to axial shear loading is identical for cases #1 and #2 in

Table 4.2 because these two sets of properties are equivalent for tangential interfacial

Table 4.2: Interfacial Properties

28.5x10
28.5x10°6 0.0

displacements and axial shear loading creates tangential interfacial displacements
exclusively. The same is not true for transverse tensile loading because debonding is

initiated by normal interfacial displacements.

The ductility of an interface is determined by the characteristic length, d. As
shown in Fig. 4.8, a large characteristic length corresponds to a ductile interface while a
small characteristic length corresponds to a brittle interface. As seen for 5 =5.7x10%1n., 2

very brittle interface has a very unstable response.

In this study, and in Tvergaard (1990), the coefficient of friction was found to have
very little, if any, influence on the effective response of the composite. This is in part
because frictional sliding does not occur until after bond failure has taken place; and even
then only when compressive normal tractions are present. For the remainder of this study

the coefficient of friction is assumed to be zero.
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4.1.3 Array Geometry Effects

The geometry of the repeating unit cell is dictated by the fiber packing sequence of
the composite that is being modelled. For rectangular array models, the only variable
dimensions are the height, a and the width b (Fig. 3.1). Since the fiber diameter is known
these two dimensions represent not only the packing sequence, but also the fiber volume
fraction. The packing sequence can be defined by the aspect ratio, R = a/b. Often MMC
are fabricated with uneven fiber spacings. This is frequently caused by uneven layups as
well as by fiber swimming during fabrication. The result is that the analyst is faced with
having to decide what aspect ratio is most appropriate. Thus, it is critical to understand
how the aspect ratio affects the effective composite response. To this end, the response of
composites with a fiber volume fraction of 0.4 and aspect ratios of 0.8, 1.0, and 1.2 are

presented in Fig. 4.9 and 4.10.

The transverse tensile responses of composites with aspect ratios of 0.8, 1.0 (a
square unit cell), and 1.2 are depicted in Fig. 4.9 for both the perfect bond and no
interfacial bond conditions. The transverse responses for perfect bonding are the same for
aspect ratios of 0.8 and 1.2, with the response for an aspect ratio of 1.0 being slightly more
compliant in the plastic region. For the no bond condition shown in Fig. 4.9b there is a
large variation in both initial stiffnesses and the onset of plasticity for varying aspect
ratios. This is not surprising in view of the fact that the matrix must carry all of the load.
The throat of the matrix (distance along the z-axis from the top of the fiber to the top of the
repeating cell) increases as the aspect ratio increases. Thus, for imperfect bonding, as the
aspect ratio and the throat of the matrix increase the matrix material is more efficiently
used for transverse loading in the 2-direction. Conversely, as the aspect ratio increases the

effective response is more compliant for transverse loading in the 3-direction.
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The axial shear responses for aspect ratios of 0.8, 1.0, and 1.2 are shown in Fig.
4.10. For perfect bonding the responses are almost identical. But for no interfacial bond,
large differences in stiffness as well as plastic response are observed. The same arguments

apply to the axial shear response as to the transverse response.

The obvious conclusion is that while the aspect ratio has a very minimal affect on
the response of perfectly bonded composites, it has a very significant affect on the
response of imperfectly bonded composites. Therefore one must be very careful when
applying a rectangular unit cell to composites with imperfect interfaces. The composites
modelled in the present work had a nominal aspect ratio of 1.0, although there were many
unevenly spaced fibers (Fig. 5.1). For the remainder of this work the aspect ratio will be

taken to be 1.0.

4.2 Angle-ply Composites

The current laminate analysis model is capable of predicting the nonlinear
response of a symmetric laminate subjected to thermomechanical loading. To illustrate the
nonlinear effects of plasticity and damage the predicted response of a [+45]g SiC/Ti
laminate subjected to axial, shear, and combined axial/shear loading will be presented in
this section. The constituent properties are given in Table 4.1 and the thickness of each ply
is taken to be 0.008 in. All mechanical loads are applied through strain loading. Perfect
bonding between the fiber and matrix is considered as well as a debonding fiber/matrix

interface and an interface with no bond.

The response of a [+45]s laminate to uniaxial loading is shown in Fig. 4.11.
Predictions from the current unit cell finite element model are identified by FE.

Predictions from the method of cells (Aboudi, 1991) are also presented and are identified
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by MC. As for the method of cells predictions for unidirectional composites, the stiffness
tensor for each ply has not been transformed to that of a transversely isotropic material.
Predictions from both models for perfect bonding and the no bond condition are labelled
PB and NB, respectively. The no bond condition is approximated in the method of cells
model (Aboudi, 1988) by making both the normal and tangential bonding parameters quite
large (R, = R, =1 in./ksi). The predictions from the unit cell model for a debonding
interface, labelled DB, are based on the following interfacial properties: 0,=20 ksi, a=1,
5=28.5><10'6 in., p=0. This set of interfacial properties does not necessarily represent a
real interface. These interfacial properties were chosen simply because predictions were
presented for a unidirectional composite with this set of interfacial properties in Fig. 4.5-

4.8.

The predictied axial response (Fig. 4.11a) from the two models agrees reasonably
well for both perfect bonding and no bond. The initial axial stiffness predicted by the
method of cells for the no bond condition is more compliant because of the imposed
traction continuity between subcells and the simplified geometry. For no bond between the
fiber and matrix the stresses in the fiber subcell are zero. Traction continuity dictates that
some stress components in adjacent matrix subcells are also zero, which may be over-

restrictive.

The initial response of a composite with a debonding interface is initially that ofa
perfectly bonded composite but is quickly degraded. As for unidirectional composites an
unstable response, or falling effective stress-strain curve, is exhibited once the peak in the
interfacial traction-displacement relation is reached. As the interface becomes completely

debonded the prediction for no bond is approached.

The shear response predicted by both models (Fig. 4.11b) is essentially the same
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for perfect bonding, but once again the method of cells predicts a more compliant response
for the no bond condition. The same reasoning applies here as above for the axial
response. The prediction for a composite with a debonding interface falls between the

predicted responses for perfect and no bond.

The response of a [+45]; laminate subjected to combined axial and shear loading is
shown in Fig. 4.12. Both axial (Fig. 4.12a) and shear (Fig. 4.12b) responses are quite
similar to their uniaxial loading counterparts, the main difference being that nonlinear
response occurs at a lower stress level. It is interesting to note that the shear response for
combined loading of a [£45], laminate with a debonding interface is the same as that for a

laminate with no interfacial bonding,.
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CHAPTER 5
EXPERIMENTAL PROCEDURES
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The experimental program consisted of two phases. The first phase entailed
development of a test method most appropriate for the given MMC to be tested. The test
matrix was first determined, then other factors such as what data was to be collected, how
to measure strains, where to measure strains, how to apply the loads, what type of fixtures
are required, etc. were determined. The actual tesdng was performed in the second phase
of the program. This chapter discusses the materials and procedures used in the

experimental program. Chapter 6 presents the results of the experimental program.

5.1 Materials

The McDonnell Douglas Corporation originally supplied ten SiC/Ti tubular
specimens for testing at the University of Virginia Composite Mechanics Laboratory, six
were [+45], and four were [04]. Five more [$45]; tubes were delivered at a later date. The
tubes were manufactured by Textron using a proprietary hot isostatic pressing (HIP)
technique. Molybdenum wires were woven together with the fibers to form a cloth and
help keep the fibers in the proper alignment during fabrication. Alternating layers of fiber
cloth and matrix foil are consolidated at high temperature and pressure to form the

composite. Each tube consists of four plies that are nominally 0.008 in. thick.

5.1.1 Constituents

The following sections briefly describe the constituents that make up the
composite. Nominally, the composite is comprised of 60.4% Ti matrix, 39.4% SiC fiber,

and 0.2% molybdenum wire weave.



5.1.1.1 Matrix

The metal matrix used in the tubes is consolidated from thin foils of the metastable
titanium alloy Ti-15V-3Cr-3Sn-3Al, commonly designated Ti-15-3. Lerch, et al. (1988)
provide an in-depth discussion of the microstructure of Ti-15-3, suffice it to note here that
the microstructure contains orthorhombic grains, and that these grains become finer and

more equiaxed near the fiber/matrix interfaces.

5.1.1.2 Fiber

The SCS-6 fiber manufactured by Textron is a SiC fiber designed specifically for
use with titanium matrices. These fibers are produced using the chemical vapor deposition
(CVD) process. The fiber is a complex, multilayered structure which is built up from a
13x10% in. (33 pm) diameter carbon monofilament. A pyrolytic carbon coating is
deposited on the carbon core up to a thickness of 0.59%x10 in. (1.5 pm). Silicon carbide is
then deposited on this substrate to a diameter of 56><10’4 in. (142 pm) (Lerch, et al., 1988).
Two four-layer coatings (described below) totalling 1.2x10 in. (3 pm) are applied using
the CVD process to control the fiber/matrix reaction zone and improve the strength of the
fiber. The first layer consists of small SiC crystallites in a carbon matrix, the second layer
is predominantly carbon, the third layer consists of laminar carbon, and the fourth layer is
characterizcd by a more randomly oriented carbon microstructure (Nutt and Wawner,
1985). A disadvantage associated with using these coatings is that the bond between the
coatings is quite poor. As described previously, there is an abundance of evidence showing
that fiber/matrix debonding in laminates with off-axis plies is a prominent source of
degraded response. Figure 5.1 shows the microstructure of both [04] and [145]g

composites.



(b) [£45],
Photos courtesy of Brad Lerch, NASA Lewis Research Center (Lerch, 1993)

Figure 5.1: SiC/Ti Composite Microstructure
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5.1.1.3 Wire Weave

The molybdenum wires used to weave the SiC fibers into a cloth are often called
‘moly wires’. These wires are 0.002 in. in diameter, run perpendicular to the SiC fibers,

and are spaced approximately 0.2 in. apart.

5.1.2 Geometry

The geometry of the [04] and [£45]; tubes are quite different, enough so that even
the way they are gripped by the testing apparatus is different. Specimen geometry and the

fixtures used to grip the tubes are described below.

5.1.2.1 [04] Tubes

The [04] tubes are nominally 7 in. long and have an outer diameter of 1.5 in. (Fig.
5.2). The tubes were received with steel plugs 2 in. long bonded to the inner surface of the
ends of the tubes to facilitate the introduction of a uniform load into the composite during
testing. Thus, the gage length was 3 inches. A half-inch diameter hole was drilled through
the tube and steel plug at each end for load introduction. Previous experience with testing
of composite materials demonstrated that loading a [0] composite through a bolt could
cause failure at the bolt hole. Therefore, a fixture was designed to bond to the outside of
the tube, as well as be pinned to the tube. The pin was still required, because the adhesive
by itself was not capable of providing adequate strength. Hysol 934NA adhesive mixed in
a 100 part A to 33 part B ratio was uséd, with 1% glass beads added to improve the crack
resistance and help control the bond line. Nylon thread, 0.01 in. in diameter, was also used
to control the bond line. Surface preparation for bonding was performed on both the

outside of the tube and the inside of the fixture. The procedure used is as follows.
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4th Ply (+45)
3rd Ply (-45)

2nd Ply (45)
1st Ply (+45)

3 = Strain Gage

[+45],
Figure 5.2: Tube Geometry

1. Roughen surface with medium grit emery paper.

2. Thoroughly degrease surface with a mild degreaser.

3. Dip in acid bath (1 part concentrated HCI/1 part distilled water) for 10 minutes.
4. Rinse with cold distilled water.

5. Dry in oven at 150°F for 10 minutes.

6. Apply Hysol adhesive to inside of fixture only.

7. Bond fixture to tube, then insert and bond pin in place.

8. Align in MTS for 2 hours, remove, and cure at room temperature for 20 hours,
then cure at 120°F for 12 hours.

With one exception, [04] tubes were instrumented with five rectangular strain gage
rosettes. Micro-Measurements type EP-08-062RB-120 (Tube #2) and TML type FRA-2-
11 (Tube #4) both were used, with the individual gages oriented at angles of -45, 0, and 45
degrees measured from the longitudinal axis of the tube. Three rosettes were spaced at

120° around the mid-length of the tube. The other two rosettes were located at the top and
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bottom of the gage length. Figure 5.3a shows a [04) tube with fixtures and strain gages
bonded to it. Four Micro-Measurements type CEA-06-125UR-350 rectangular strain
gages oriented at angles of 0, -45 and 90 degrees were bonded around the mid-length
(spaced at 90°) of Tube #1.

5.1.2.2 [+45], Tubes

The [£45], tubes are nominally 12 in. long and have an outer diameter of 4 in. (Fig.
5.2). Note that plies are numbered from the inside of the tube, and a positive ply
orientation angle is defined by a counterclockwise rotation from the longitudinal axis of
the tube, as viewed from inside the tube. The tubes were received with tapered steel
collars 4 in. long, bonded to both inside and outside of the ends, leaving a gage length of 4
in. Eight half-inch bolt holes were drilled at an even spacing around the circumference of
cach end of the tube. These holes accommodate eight bolts that transfer load from the
fixture to the tube. The fixture itself is comprised of three components (Fig. 5.4), an outer
ring, a solid inner core, and the end piece that is actually held by the collet grips of the
load frame. The specimen is attached to the fixwre by bolts through the outer ring,
specimen, and inner core. Figure 5.5 shows a [£45]; in the load frame. Two [145] tubes
were instrumented with five rectangular strain gage rosettes located in the same manner as
described for the [04) tubes. One tube had four rosettes located 90° apart, bonded around
the mid-length of the tube. The axial strain to failure of the [+45], tube was expected to be
approximately 10%, hence high elongation Micro-Measurements type EP-08-062RB-120

strain gages were used. Figure 5.3b shows a fully instrumented [+45]; tube.

Visual inspection of the tubes revealed that some fibers, at least in the outermost
ply had not remained in the proper alignment during fabrication. It was also apparent that

seams existed in the tubes where the ends of the fiber cloth abutted, resulting in fiber-rich
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Figure 5.3: SCS-6/Ti-15-3 Specimens
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Figure 5.4: [+45]; Fixture

Figure 5.5: [+45], tube in load stand

and fiber-depleted regions. Like the fibers, these seams are located at a 45° angle to the

tube axis. Strain gage rosettes were located as far as possible from anomalies, while still

holding to the pattern described above.
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5.2 Procedures

The experimental program consisted of tests conducted on an axial/torsional load
frame. The following subsections describe the types of loads applied to the test specimens,

the test matrix, equipment, and instrumentation.

5.2.1 Loadings

Uniaxial tension and compression tests were first conducted on both [04] and
[£45], tubes to determine initial axial elastic properties. Torsion tests were then conducted
to determine the initial axial shear modulus. Both positive and negative shear were applied
to the [145] tubes. Internal pressure was applied to a [04] tube to determine the initial
transverse modulus. All of these tests were conducted at very low stress levels so that no,

or at worst, minimal damage would be done to the specimen.

Three types of multiaxial loadings, designated Type I, Type II, and Type III were
then applied to the tubes. After the initial tests to determine elastic properties, only one
type of loading was applied to any particular tube. The loadings are represented
schematically in Fig. 5.6, and are described below. Type I tests are a series of axial tensile
tests to sequentially higher load levels, where at the peak of each individual cycle, a
biaxial stress state is introduced by applying an increment of torque. Both axial and shear
stiffnesses are measured during the biaxial portion of the test. The torque is unloaded

while the tensile load is still held constant, then the tensile load is removed.

Type 11 tests are a series of torsional tests to sequentially higher load levels, where
at the peak of each individual cycle, a biaxial stress state is introduced by applying an
increment of axial tension. Again, both axial and shear stiffnesses are measured during the

biaxial portion of the test. The tension is unloaded while the torsional load is still held
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Table 5.1: Test Matrix

Tube #10 -

constant, then the torsional load is removed.

Type III tests were quite complicated to conduct, because it was desirable to have
only one stress component, the circumferential (transverse for a [0] tube) stress present.
This required that the longitudinal stress component due to internal pressure be eliminated
by the application of an axial compression. Due to the type of hydraulic system used to
apply the internal pressure, it was impossible to apply axial compression at a rate
proportional to the internal pressure, thus the internal pressure and compression were
applied incrementally for each cycle. At the peak internal pressure, an increment of axial
tension was applied and removed, then an increment of torque was applied and removed.

Finally, the internal pressure was unloaded.

Type I tests were modified to study time dependent inelastic effects by the
inclusion of hold times where the applied stresses were held constant for a finite time
period immediately before the application of torque and at the maximum torque (points J
and K in Fig. 5.6). This modified loading is designated Type IA, and has been applied only
to [£45]; tubes.

5.2.2 Test Matrix

The test matrix for biaxial loadings is given in Table 5.1. The tube identification
number is given for each sequence of biaxial loading. Table 5.2 presents the test matrix for

Type I loadings. These tests were conducted in load and torque control. Table 5.3 displays
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Table 5.2: Type I Loading

a. adhesive failure
b. failure

c. failure

the test matrix for Type lA loading. Recall that the first hold takes place under uniaxial
tension, while the second hold occurs at the peak biaxial load. The total hold time is
defined to be the amount of time that the axial tension is held constant. The test matrix for
Type 1I tests is shown in Table 5.4. These tests were conducted in rotation and load

control. Finally, Table 5.5 gives the test matrix for Type 11 loading. In Type III tests the

peak internal pressure is held constant while axial tension is applied and then removed
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using load control. Torque is then applied and unloaded using torque control. The final

step is unloading the internal pressure.

5.2.3 Test Equipment and Instrumentation

Testing was performed at room temperature on a servo-hydraulic MTS Axial/
Torsional load stand with an axial capacity of 55,000 pounds and a torsional capacity of
20,000 inch-pounds. The load stand is currently outfitted with hydraulic, one-inch
diameter collet grips. The test equipment is shown in Fig. 5.7. Axial and torsional loads
were applied independently using a function generator for axial loads and a Micro-Profiler

for torsional loads or vise versa. MTS 458 DC and AC Controllers on the MTS Micro-
Table 5.3: 'I'ype 1A Loading

 Cycle | o™ | Hold#l Ty Hold #2

| e | (o k) | e |
10 266 s | o 358
2| 18 246 5 297 640
3oy 24 297 5 284 694
& | 30 1375 0 0 137
5 30 182 10 301 675
6 36 300 10 301 791
7 41 300 10 266 760
8 48 304 10 299 793
9 54 419 10 285 894
10 60 422 11 0° 525
64 422 10 361 971
68 421 3¢ 0 444

8.7 applied at ¢ = 12 ksi
b. cycle stopped prematurely

¢. cycle stopped prematurely
d. failure
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Table 5.4: Type 11 Loading

a. machine capacity reached
b. failure

Console were used to control displacement, rotation, load, or torque. Internal pressure was
applied by pumping hydraulic oil into the tube through a hole drilled in the steel end-plug
with the pump from a second MTS load stand. A 3500 psi capacity pressure transducer
was used to measure the static pressure applied to the tube. The internal pressure test setup
is shown in Fig. 5.8. A plexiglass shield and containment pan were used for protection in

the event failure occurred.

Transducer and strain gage wires are connected to the connection box, which
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Table 5.5: Type 111 Loading

4

4

4

4

5 4
6 4
7] 24 10 4

8 ' 27 10 4

9 30 10 4
0 | 33 10 4
n o 36 10 4
12 39 10 4
13 42 10 4
14 45 10 4
15 | 462 0 0

a. failure

provides a quarter bridge for strain gages. ‘I'he connection box, in turn, is linked to an
Orion datalogger, which samples all the data. ‘The datalogger is controlled by an RS-232
link to a 386 class PC. The MATPAC data acquisition software (Hidde, et al., 1988) on the
PC provides real time stress-strain (or load-deflection) curves throughout the test.
MATPAC also has post-processing capabilities including plotting and correction of strain
readings for misalignment, transverse sensitivily, and Wheatstone bridge nonlinearity. All
data was sampled at a rate of one sweep per second. This was the fastest data could be

transferred from the datalogger to the PC when five strain gage rosettes and four



ITEM DESCRIPTION ITEM DESCRIPTION
A Specimen G Function Generator
B Top Collet Grip H Connection Box
C Bottom Collet Grip [ Data Logger
D MTS A/T Load Stand J 386 PC
E MTS Console K VCR
F Micro-Profiler

Figure 5.7: Test Equipment
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Filll;e 58 [04] Tué ‘undcr} internal pressure
transducers were used. Acoustic emissions (AE) were monitored during testing by
mounting a microphone to the outer surface of the specimen and recording on a VCR tape.
During the Type IA tests a specialized AE data acquisition system was used, this system is

described in the following section.

5.2.4 Acoustic Emission Monitoring

Elastic wave energy propagating through a specimen can be converted into a
decipherable voltage-time signature through high fidelity piezoelectric sensing of
boundary motion. A point contact piezoelectric sensor was used to convert displacement

into a voltage-time signature which was then sent to a storage oscilloscope for further
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analysis and manipulation. The energy associated with an acoustic emission (AE) event is

approximated by computing the RMS voltage of the signature.

AE energy for events in Type IA tests was obtained in the following fashion. Leads
from the piezoelectric sensor were directed through charge amplifiers. High pass and low
pass filters then eliminated environmental noise. Each channel was then split into four and
connected to a LeCroy 7200 precision digital oscilloscope. A custom LeCroy RCL
program triggered from incoming signals, used a waveform represented by 20,000 data
points to compute the RMS voltage. The effective bandwidth was 20 kHz to 2 MHz. The
program then stored the RMS voltage and the time of the event to a file. In this way, AE
data could be corresponded with mechanical stress-strain data, as well as with AE

recorded on tape.
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CHAPTER 6

EXPERIMENTAL RESULTS

This chapter presents experimental results and discusses the features observed in
tests conducted on the tubular specimens. The specimens are identified by numbers
ranging from one to ten. Tubes #1-4 are [04] composites, and tubes #5-10 are [245]

composites. Tubes #3, 6, 7, and 8 were not tested in the present study.

6.1 Initial Elastic Response

Before multiaxial loadings were applied to a specimen, simple tension,
compression, torsion, and, in one case, internal pressure tests were conducted to determine
the initial elastic properties of each specimen. The maximum stress in each of these tests
was kept very small so as to minimize the possibility of causing damage or yielding in the

specimen.

6.1.1 [04] Tubes

The stress-axial strain and transverse-axial strain diagrams for axial tensile and
compressive loading of Tube #1 are shown in Fig. 6.1. The stress-strain diagram (Fig.
6.1a) shows very little scatter in the data collected from the four strain gage rosettes
located around its mid-length. Slightly less consistent data is obtained for the transverse-
axial strain diagram (Fig. 6.1b); however, the data is generally considered good in light of
the very small transverse strains obtained. The shear response to positive and negative
torsion is shown in Fig. 6.2. Again, very uniform data were collected from the four
rosettes, and as one would expect, no difference was observed in the response to positive

or negative torsion. The results for internal pressure loading are presented in Fig. 6.3. No
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axial compression was applied, thus the slope of the stress-strain curve (Fig. 6.3a) does not
represent the transverse stiffness of the tube. However, it can be observed that the
response is very uniform for three of the four roscttes. Rosette #3 yields a substantially
different transverse response that is also evident from Fig. 6.3b which presents the
resulting axial strain versus transverse strain diagram. The inconsistent transverse
response obtained by Rosette #3 could be due to material nonuniformity, which will be

discussed later, and will otherwise be neglected for the remainder of this work.

The response to tensile loading from five strain gage rosettes bonded to Tube #2 is
shown in Fig. 6.4. Uniform results are obtained from rosettes #1, 2, and 3, which are
located around the mid-length of the tube. The rosettes mounted at either end of the gage
length indicate a stiffer response due to stress concentrations created by the fixtures. These
stress concentrations will be considered in more detail in Section 7.1. The shear response

of the tube subjected to torsional loading is shown in Fig. 6.5, The results from all five
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Figure 6.3: [04] Transverse Loading - Tube #1
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rosettes are relatively uniform, indicating that the fixtures do not create large shear stress

concentrations under torsional loading.

Figure 6.6 displays the response of Tube #4 to tensile and compressive loadings. In
these tests and many subsequent tests, data acquisition was initiated before closing the top
grip because a small misalignment in the load train was suspected, even though the
alignment of the load frame was within the manufacturer’s tolerances. A small
misalignment causes measurable bending strains upon gripping the specimen, these strains
are responsible for the data from some rosettes not passing through the origin. Aside from
the offset associated with these gripping strains, the three rosettes around the mid-length
of the tube provide reasonably consistent results. The rosettes at the ends of the gage
length yield a stiffer response, and inexplicably, one gives a higher, and one a lower
Poisson’s ratio than the mid-length rosettes. The shear response to positive and negative

torsion is shown in Fig. 6.7; again the mid-length rosettes provide consistent results, aside

RN
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Figure 6.6: [04] Axial Loading - Tube #4
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from the initial strain oftset due to gripping.

The initial elastic properties for [O4] tubes determined from all strain gages are
summarized in Table 6.1. Predictions from the theoretical model discussed in Chapters 2
and 3 are also presented for both perfect bonding and no bond between the fiber and
matrix. Comparisons between these predictions and experimental data are presented in

Section 7.1.

6.1.2 [145]; Tubes

The axial stress-strain diagram and transverse-axial strain diagram are shown in
Fig. 6.8 for tensile loading applied to Tube #5. Unlike all other tests no unloading data was
recorded. The stress-strain response (Fig. 6.8a) is not as uniform as it was for the [O4]
tubes. There is a range of stiffnesses (16.4 to 17.8 Msi) measured from the three strain

gage rosettes located at the mid-length of the tube. The scatter observed in the transverse-
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Table 6.1: [04] Initial Elastic Properties

Vi Ep var |
31.0 0.312 23.8 0240 | 829

31.0 0.312 5.97 0.0703 2.10
| 307 0.263 21.2 0.207 7.49
323 0.333 17.1 0.140 7.84
32.1 0.289 21.0 0.193 7.63

'mbc #2RI1| 319 0.251 - - 7.85

N R2| 322 0.293 - - 8.00
g1 R3| 317 0.290 - - 8.1
1 R4| 336 0.298 - - 7.69

= . Rs| 376 0.275 - - 8.20
Tube#4 R1| 324 0.263 - - 7.48

o R2| 317 0.270 . - 7.56

R3| 308 0.274 - - 7.35

R4 | 362 0.188 . - 8.06

R5| 385 0.338 - - 8.82

axial svtrain Jdata (Fig. 6.8b) is most probably due to numerical inaccuracies (too few
significant figures and round-off) in the strain transformation calculations, or possibly to
background electronic noise. Figure 6.9 presents the shear response of the tube to positive
and negative torsional loading. The data is very uniform with Rosette #2 displaying a
slightly stiffer response than the other four rosettes. No shear stress concentrations from
the fixtures are notable. Likewise, no significant difference in stiffness is evident between

positive and negative torsion.

The response obtained from four rosettes located around the mid-length of Tube
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#9, to tensile loading is shown in Fig. 6.10. As tor Tube #5, there is a relatively wide range
of stiffnesses (17.2 to 21.0 Msi) indicated in Fig. 6.10a. The transverse-axial strain
diagram (Fig. 6.10b) is plotted for only two rosettes because data was not collected from
all gages in two of the rosettes; hence transverse and shear strain data were not available.
The shear response to torsional loading shown in Fig. 6.11 is reasonably consistent for the

two rosettes used.

The range of axial stiffnesses measured from different strain gages located around
the mid-length of Tubes #5 and 9 suggest that the [£45]s tubes are nonuniform. Four
additional longitudinal TML FLA-2-11 strain gages were bonded at strategic locations
around the mid-length of Tube #10. Figure 6.12a shows the response to tensile loading
obtained from seven strain gages, located around the mid-length of the tube. The figure
clearly shows a wide range of stiffnesses (15.1 to 21.1 Msi). Gages #3, 6, and 7 are the 0°

gages of the original rosettes mounted on the tube. While Gages #6 and 7 were far
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removed from any visible anomalies, Gage #3 was relatively close to a scam in the
outermost ply. Gages #1 and 2 were mounted in a region that appeared to be rich in fibers,
adjacent to a visible seam in the outermost ply. Gage #5 was mounted in the seam, a
region that appeared to have few, if any, fibers in the outermost ply. The gages in the fiber-
rich region display a much stiffer response, while the gage in the fiber-depleted region
displays a much more compliant response, than do the gages where no surface
irregularities are present. It is noted that possible seams and other irregularities in the inner
three plies are hidden from view, but would also effect the local stiffness of the composite,
although their effect on strain gages mounted on the outer surface would be less
pronounced. The transverse-axial strain diagram (Fig. 6.12b) for the original rosettes

suggests that the anomalies have little, or no, effect on Poisson ratio.

Figure 6.13 shows the shear response of the tube (#10) to positive and negative

torsional loading. Rosette #3, contains Gage #3 discussed above, and is located in the
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proximity of a seam in a tiber-rich region. Its shear response is stitfer than that of the other
rosettes located around the mid-length of the tube, indicating that this type of anomaly can

affect both axial and shear stiffness.

The initial elastic properties for [£45], tubes determined from all strain gages are
summarized in Table 6.2. Predictions based on lamination theory, as presented in Chapters
2 and 3, are also given for both perfect bonding and no bond between the fiber and matrix.
Comparisons between these predictions and experimental data are presented in Section

7.2.

6.2 Multiaxial Loading Results

In this section the results of the multiaxial loadings previously described in Section
5.2 and shown schematically in Fig. 5.6 are presented and discussed. These types of

loading cycles made it feasible to collect a large amount of unloading data as well as
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Table 6.2: {£45], Initial Elastic Properties

16.4
17.8 0.459 - . 9.45
16.7 0.351 . . 8.62
______ 19.8 0.370 : - 8.60
e 16.5 0.418 . . 8.71
[T Tubew RI| 172 0331 - - 9.57
= "R2| 186 | 0352 - - 9.13
. R3| 191 . - . -
E feoioioa R4 21.0 - . - -
' Tube#lo (07) R1| 161 0.360 - - 8.59
. _,';,v;:»,gqs)'m 16.7 0.332 - - 8.85
~ ©»R3| 211 | 0362 - - 9.75
. R4| 185 0.360 - . 8.93
. RS| 203 0.369 . - 9.70
N 198 - : - -
@] 198 : : i -
L G4 | 181 . . - -
(@5 | 151 - - . -

loading data. Having both loading and unloading data makes it possible to delineate

inelastic deformation due to damage from that due to matrix plasticity.
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6.2.1 [04] Tubes

In the previous section it was shown that the response of a [04] tube is very
uniform around the mid-length of the tube. Results will now be presented from one strain

gage rosette representative of the specimen response at the mid-length of the tube.

6.2.1.1 Type I Loading

The axial and shear responses of a [04] tube subjected to Type I loading are shown
in Fig. 6.14 and 6.15, respectively. The maximum axial stress is increased with each
successive cycle and a small increment of shear stress is applied at this maximum axial
stress. The axial load cycles shown in Fig. 6.14 have been offset for clarity. The shear
response shown in Fig. 6.15 displays an elastic coupling phenomenon during the axial
loading and unloading portions of the tests. During axial loading shear strains are
accumulated, then upon axial unloading the accumulated shear strains are released. This
coupling had no apparent effect on the shear stiffness, or the inelastic response, possibly
because shear stresses were kept very low. While the exact cause of the coupling is
uncertain, it seems plausible that the small misalignment in the load train could be the
cause. Finally, it is noted that some degree of coupling was observed in virtually all

multiaxial loading tests.

Both axial and shear responses were generally linear elastic until failure occurred.
The maximum axial stress in cycle #12 was 119 ksi, this load cycle was terminated prior
to application of shear stresses because a very loud acoustic emission was heard.
Inspection of the specimen revealed that the adhesive bonding the tube to the top fixture
had failed, however the bolt was still bonded in place. The tube failed in the top grip

during cycle #13 at an axial stress of 108 ksi. As shown in Fig. 6.16, the failure surface ran
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Figure 6.16: [04] Type I loading fracture surface
across the tube near the bottom of the steel plug bonded to the top of the tube, and
connected to the bolt holes on either side of the specimen. Visual microscopy revealed that
the fracture surface transverse to the fibers occurred at the closest moly wire to the end of
the steel plug. A finite element analysis of the tube was performed to better understand this
failure, the results are discussed in Section 7.1. As indicated by data in Fig. 6.17, no

stiffness degradation was observed.

6.2.1.2 Type II Loading

The shear and axial responses for Type II loading on a [04] tube are shown in Fig.
6.18 and 6.19, respectively. In Type Il tests the shear stress is increased with each cycle,
and a small increment of tensile stress is applied at the peak shear stress. The shear
responses in Fig. 6.18 are artiticially offset for clarity. The axial responses (Fig. 6.19)
display the elastic coupling discussed for Type I loading. Both shear and axial responses

are linear elastic until cycle #13. Low level acoustic emissions (AE) initiated at a shear
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stress of 35 ksi in cycle #12. The intensity of these emissions increased with increasing
shear stress. In the subsequent cycle (#13), AE began at the shear stress of 37 ksi. When
the shear stress of 39.5 ksi was attained a distinct knee was observed in the shear response.
After this knee, the response resembled that of a nearly perfectly plastic material. The
unloading response was nonlinear with an initial stiffness of 6.5 Msi, which is less than
the initial loading stiffness of 7.4 Msi. The final cycle (#14) displayed a nonlinear
response beginning at approximately 10 ksi, with AE starting at 38 ksi. The initial shear
stiffness was degraded by 10%, and again a distinct knee developed, followed by a linear

hardening type response.

The inelastic response obtained from the three rosettes located around the mid-

length of the tube was substantially different, so data from all three rosettes is presented

Stiffness
(Msi)

Figure 6.17: [04] Type I Loading Stiffnesses
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Figure 6.21: [04] Type Il loading fracture surﬁce
for cycles #13 and 14 in Fig. 6.20. Failure, in the torm of a fine longitudinal crack running
the length of the tube (Fig. 6.21), occurred at the shear stress of 42 ksi. The AE followed
the Kaiser effect (Kaiser, 1950), which to summarize, simply states that AE will increase
as the applied stress increases, and upon unloading/reloading, will not be heard until the
previous maximum stress has been surpassed. Figure 6.22 presents a histogram that plots
axial and shear stiffness versus cycle for Type I loading. No degradation is observed with
the exception of the final cycle, where the shear stiffness was degraded 10% as discussed

above.
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stress equals zero is plotted in Fig. 6.23. The unloading response is not shown and the data
was adjusted such that each cycle starts at the origin. The transverse stress, Gz is

calculated using the well known equation:

6.1)

r
t

- P

22

G

and r is the radius of the cylinder to

*

, t is the wall thickness

where p is the internal pressure
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the center of the wall, which is assumed to be thin. The transverse response of the first
twelve cycles is linear elastic, with low level AE first heard at the transverse stress of 37
ksi in cycle #12. The initial nonlinear response, or knee, occurred at G3,=40 ksi in cycle
#13. The intensity of acoustic activity increased as the transverse stress increased and
followed the previously discussed Kaiser effect. A knee in the transverse response also
occurred at 25 ksi in cycle #14, and 21 ksi in cycle #15. The initial transverse modulus
remained unchanged for all Type I1I tests. The axial and shear responses of a few typical
cycles are shown in Fig. 6.24. The axial response was linear elastic and displayed the
elastic coupling characteristic of these multiaxial loadings. Initially, the shear response

was also linear elastic, but in cycle #14 an inelastic response was exhibited.

Cycle #14 was the only complete cycle in which inelastic deformation occurred.
Fig. 6.25 provides a detailed view of the transverse and axial strains as a function of the
applied transverse stress in cycle #14. The letters A-H designate points in the load history
shown in Fig. 5.6¢c. It is noted that no data was collected during the removal of axial
compression, between points B and C. The figure shows the nonlinear transverse response
as well as the permanent transverse and axial strains present upon unloading. It also shows
an accumulation of transverse strain during shear loading (E-F) and unloading (F-G).
Figure 6.26 shows the nonlinear response obtained from all four rosettes located around
the mid-length of the tube and indicates that the inelastic deformation is nonuniform
around the tube. The most likely explanation for this is uneven fiber spacing. It seems
reasonable that the local transverse response would be affected by uneven fiber spacing,

while the axial response would not.

Figures 6.27-6.29 present the transverse response, shear response, and raw strain

data from Rosettes #1 and 2 during cycle #14. Figure 6.27 accentuates the nonuniform



109

lo.o N " ~ 3 " i . 3 . " " £ . " : = "

C11
(ksi) 1
—x—  Cycle#l |
L I Cycle#10
- Cycle#14
0.0 0.02 0.04 0.06 0.08 0.10
€11 (%)
(a) Axial Response 19
6.0 e ey
5.0 J
4.0 -
T12
3.0 -
(ksi)
2.0 - i\
Cycle #1
10 - Cycle#10 ]
-a- Cycle#14
0.0 — 4 ¥ . \
-0.08 0.0 0.05 0.10
Y12 (%)
(b) Shear Response B

Figure 6.24: [04] Type III Loading - Axial and Shear Responses



110

50.0 . ¢ } } }
G
40.0 A
30.0 ¢
022
(ksi) 20.0 1
10,0 |
0.0 A 4
0.08 0.0 0.05 0.10 . X 0.25
£ (%)
Figure 6.25: [04] Type I1I Loading Cycle #14 -
500 st ' } ; } }
40.0 + +
300 4
C22
(ksi) 200 |
% Rosetie #1
.+ 2 Rosette #2
10.0 A i - Rosette #3
-0 Rosettc #4
o.o...*g...l%...L%....g....{....1‘....
0.0 0.05 0.10 0.15 0.20 0.25 0.30 035

€22 (%)
Figure 6.26: [04] Type I1I Loading Cycle #14 Transverse Response



s0.0

4+

40.0 4

300 +
022

(ksi) 20.0 -

10.0 4

A
H

oo...,1...,:....l.,..l....l.A..n..
pd Ll L4 L] T Al

0.0 005  0.10 15 020 025 030
€22 (%)
(a) Cycle #14, Rosette #1

0.0 ———

4

035

2 pit

300 1
G22

(ksi) 200

100 ¢

0.0 — s 4 s P } $

0.0 0.05 0.10 0.15 0.20 0.25 030
€22 (%)
(b) Cycle #14, Rosette #2

Figure 6.27: [04] Type III Loading Transverse Response

035

2.ph

111



112

6.0

-+

5.0 4

4.0 -
T12
304
(ksi)
20 ¢
1.0 ¢
. A
H—/&o.o E G 0.05 0.10 0.15
Y12 (%)
(a) Cycle #14, Rosette #1 Bt
6.0 . e - + 5 " - N N %
T12
(ksi)

0.15

(b) Cycle #14, Rosette #2 24

Figure 6.28: [04] Type 111 Loading Shear Response



0185 s b e}

113

0.10 -
Strain
—x_[G1:90°]-0.2
(%) _Q_[G2:—45°|
0.05 —0-[G3: 0°) 1
O o0 R~
e P———
el 0.015%
00 L o o v e } N ?
560 570 580 590 600 610
Time (sec)
(a) Cycle #14, Rosette #1] 25.ph
0.18 R } s e} } N
E F G
0.10 -
Strain
_9_[G1:90°)- 02 *
(%) ~5-162:-45] 0.05%
0.05 | —0-[G3: 0°} ;
_._.A—-—;Ob__‘_/\____,o.,_,__—~~~v ,.-.,O\~,__/\‘.,qo____/\—-
0.0 0o } » O S 4
560 570 580 590 600 610
Time (scec)
26.pl

(b) Cycle #14, Rosette #2

Figure 6.29: [04] Type 111 Loading Raw Strain Data



114

inelastic deformation present in the tube. Again, the letters A-H represent points in the
load history shown in Fig. 5.6¢. It is very evident that the transverse unloading response
(G-H) is nonlinear. In fact it appears to be bilinear, with the initial unloading stiffness
being much less than the final unloading stiffness. This phenomenon suggests that
separation occurs at fiber/matrix interfaces at high stress levels, these separations then
close upon unloading, leading to a higher stiffness in the final unloaded state. As observed
in Fig. 6.25, there is a substantial accumulation of transverse strain during shear loading

(E-G), this will be discussed in conjunction with Fig. 6.29.

The shear response (Fig. 6.28) indicates once again that shear strains are coupled
elastically (A-E and G-H) with transverse and axial strains. More interesting are the
permanent shear strains present upon complete unloading, and the large anomaly in the
Rosette #2 data that occurs around a shear stress of 3 ksi. The permanent shear strains

seem to indicate the presence of plasticity, but could also be caused by damage.

In order to determine the cause of the anomaly in the shear strain data it is
necessary to look at the strain readings from the individual strain gages in Rosette #2. This
is done in Fig. 6.29b. A strain of 0.2% has been subtracted from the 90° strain gage (G1)
in order to fit all the data on the figure at a reasonable scale. Also notice that because gage
#2 is oriented at -45°, a positive applied shear stress results in a negative strain (relative to
the initial value). The most outstanding feature of the figure is the large increase (0.05%)
in strain measured by the transverse 90° strain gage during shear loading. This transverse
strain occurs while the transverse stress is being held at a high, constant value, and shear
stresses are being applied. The largest rate of increased transverse strain corresponds with
the largest applied shear stresses. No further transverse strains are accumulated once the

maximum shear stress is reached (point F) and shear unloading begins. This behavior
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strongly suggests that the titanium matrix has yielded, and coupling associated with
loading on the current yield surface and the normality criterion for the plastic strain rate

vector is occurring.

The absolute increase (or relative decrease) in the strain measured by the -45° gage
appears to be due to the increase in transverse strain, leading to the anomaly noted in Fig.
6.28b. Rosette #1 also displays coupling between shear and transverse strains, although to
a much less degree (Fig. 6.29a). For both Rosettes #1 and 2 no axial strain accumulation

occurred during shear loading.

Failure occurred during internal pressure loading at the transverse stress of 46.2 ksi
in cycle #15 prior to tensile and shear loading. The failure occurred in the form of a
longitudinal crack running the length of the tube as shown in Fig. 6.30. The crack is fairly
wide, in that a relatively large amount of hydraulic oil sprayed out into the shield and

containment pan.

6.2.2 [145], Tubes

Section 6.1 showed that the [£45], tubes display a rather nonuniform response due
to material nonuniformity manifested in the form of fiber-rich and fiber-depleted regions.
The current section presents results from one strain gage rosette located at the mid-length
of a tube. While one rosette does not represent the range of stiffnesses, or even the

average, it does serve to describe the general behavior of a tube.

6.2.2.1 Type I Loading

The axial response of a [+45], tube under Type I loading is shown in Fig. 6.31a and

the shear response in Fig. 6.31b. The cyclic response illustrated in Fig. 6.31a can be
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divided into three categories based on the phenomena observed in cycles #1-4, cycles #5-
6, and cycles #7-15. The axial response observed in cycles #1-4 was elastic and bilinear. A
slight knee was observed at approximately 8 ksi. Upon unloading, the initial stress-strain
path was retraced with no apparent strain accumulation in the unloaded state. During the

shear loading portion of the load cycle, no axial strain increase was observed.

When the axial stress reached 20 ksi during cycle #5, the response clearly became
nonlinear and was characterized by degradation in the axial stiffness and dissipation of
energy upon unloading. However, no axial strain growth was observed during the

torsional portion of the loading cycle. A small amount of permanent axial strain, likely

Figure 6.30: [04] Type III loading fracture
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associated with interfacial slippage, was evident when the material was completely
unloaded. Cycle #6 was similar to #5 except the amount of permanent strain in the

unloaded state was higher.

Cycles #7-15, in addition to further degradation in the axial stiffness, exhibited
axial strain accumulation during the torsional portion of the load cycle when the axial
stress was kept constant. This axial strain response is characteristic of the perfectly plastic
type behavior of the titanium matrix in the plastic region and suggests that the load vector
is on the current yield surface when the shear loading is applied. The axial strain
accumulation during shear loading increases with increasing axial stress. The plastic axial
strain accumulation initiates during cycle #7 at the axial stress of 30 ksi. Figure 6.31a
indicates that hysteresis takes place during unloading and reloading. This could be due to
dissipation of energy through frictional sliding during opening and closing of the
separated fiber/matrix interface, or possibly kinematic hardening effects after the matrix

has yielded.

Permanent shear strains began to be accumulated in cycle #9, as shown in Fig.
6.31b, the amount of permanent strain present in the unloaded state increased with

increasing axial stress. The final cycle (#14) displays a shear stiffening behavior.

Low level AE was heard during all cycles above the axial stress of approximately
12 ksi. The intensity of the acoustic activity increased with increasing axial stress and

again followed the Kaiser effect.

The stiffness degradation data from Type [ testing of a [+45] tube are summarized
in Fig. 6.32. Both the initial loading and initial unloading stiffnesses are shown. At first,

the loading and unloading shear stiffnesses were the same, due to the linear elastic shear
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response. To the contrary, the initial loading and unloading axial stiffnesses were never the
same, because of the nonlinear axial response that occurred even at low stress levels.
Degradation of the loading and unloading axial stiffnesses initiated after cycle #5 and
coincided with the onset of nonlinear behavior observed at an axial stress of 20 ksi. This
degradation appears to proceed in a roughly linear fashion with increasing axial stress.
Degradation of both shear stiffnesses is observed in cycle #6. The degraded shear
unloading stiffness then remains essentially constant. In contrast, the shear loading
stiffness is further degraded when large permanent axial strains are accumulated during
shear loading (cycles #12-14). This further decrease in stiffness occurs in a linear fashion

with increasing axial stress.

A sudden failure occurred in cycle #15 at the applied axial stress of 68.2 ksi. The

fracture surface is seen to follow straight line segments oriented +45° from the axis of the
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Figure 6.33: [+45] Type I loading failure

tube in Fig. 6.33. These segments corresponded with the location of a moly wire in at least
one of the plies, thus suggesting that the presence of moly wires decreases the strength of

the composite.

6.2.2.2 Type IA Loading

Type I loading was modified by the addition of two time periods when all applied
loads were held constant. The first hold period was immediately after the maximum tensile
stress had been applied and the second hold period was immediately after the maximum
shear stress had been applied. The purpose in conducting these Type IA tests was to
determine the contribution of time dependent components of the inelastic response to axial
and combined axial/shear loading. Specifically, the goal was to determine what portion of
the large axial strain accumulated during the torsional loading portion of the Type I tests

was due to time dependency rather than coupling with shear stresses.

The history of cyclic axial response to Type IA loading is presented in Fig. 6.34a.
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The response of cycles #1-4 is not visible at the scale of the figure, because it is
overshadowed by cycle #5. The initial axial stiffness is degraded with each cycle after
cycle #3, where the maximum axial stress was 24 ksi (see also Fig. 6.42). The unloading/
reloading cycles display a hysteresis type behavior characteristic of slippage or cracks
opening and closing. As for Type I loading, axial strains were accumulated in certain
cycles after the applied axial stress was held constant. This accumulation increased as the
maximum applied stress in each cycle increased, and was permanent. The shear response
from selected cycles is shown in Fig. 6.34b, where the cycles have been offset for clarity.
Beginning with cycle #5 the shear response was mildly nonlinear with a small amount of
permanent shear strain present in the unloaded state. A very small amount of shear strain

was accumulated during the second hold period in cycle #11.

To facilitate the separation of time dependent axial strain components from axial
strains associated with shear coupling, accumulated axial strain has been plotted (Fig.
6.35) versus elapsed time from the point at which the axial stress was held constant. While
the horizontal scale is the same in each Fig. 6.35a and 6.35b, the vertical scale of Fig.
6.35a has been magnified eight times to amplify the strains in cycles #1-6. Torsional
loading and unloading is darkened to emphasize shear coupling effects. In Fig. 6.35a, that
is, cycles #1-6 where the maximum axial stress is 36 ksi, the accumulated strains are
primarily due to shear coupling. Positive axial strains are induced by both shear loading
and unloading. Conversely, the axial strains accrued in cycles #7-12 are principally due to
time dependent components, or creep. These creep strains increase dramatically as the

maximum applied axial stress increases.

Figure 6.36 presents the temporal history of the axial Poisson’s ratio for Type IA

loading. Overall, Poisson’s ratio is greatly increased as the axial stress level is increased.
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The history of Poisson’s ratio in each cycle can loosely be classified into two general
categories, that of cycles #1-6, and that of cycles #7-12. Figure 6.37 shows an enlarged
view of cycles #5 and 8. Poisson’'s ratio in cycle #5 (Fig. 6.37a) remains constant during
tensile loading and the first hold period. It is then reduced during shear loading, remains
constant during the second hold period, and then increased back to the original value
during unloading. In contrast, Poisson’s ratio in cycle #8 (Fig. 6.37b) increased
significantly during tensile loading, then remained relatively constant through the balance

of the load cycle.

The sequence of figures 6.38-6.41 present normalized stress, strain, and AE data as
a function of elapsed time beginning at the start of each of cycles #1,2, 8, 11, and 12. The
AE data shown was collected using the piezoelectric sensor system described in Section
5.2. Comparison of AE data between the piezoelectric sensor system and the VCR system
indicated that the VCR system was more completely capturing the essence of the acoustic
activity. The sensor system could sample AE data approximately every two seconds, while
the VCR system provided a continuous record. Acoustic events often occurred at a rate
much faster than the sensor system could record them. The onset of AE data collected
from both systems coincided very well. The AE data shown in the figures is the RMS
voltage of the waveform sensed by the transducer. The sequence of figures 6.38-6.41
shows that the intensity of AE increases with increasing axial stress. Also of major
significance is that AE continue at a high intensity after applied stresses have been held at
a constant level. Acoustic activity is also recorded at the end of the torsional unloading
portion of the load cycle. The acoustic activity appears to be associated with fiber/matrix

interfacial debonding.

Preliminary findings from metallography conducted by Lerch (1993) revealed that
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the most prevalent damage mechanism in the [+45], tubes was fiber/matrix debonding.
This reinforces the premise that the AE monitored were primarily due the fiber/matrix

interfacial debonding.

A summary of the degradation of both axial and shear stiffnesses is shown in Fig.
6.42. As for Type I loading, a nearly linear degradation in the axial stiffness is present
after a threshold value of axial stress (24 ksi) has been surpassed. The shear stiffness is
also degraded in a roughly linear fashion, which is different from the shear stiffness

degradation observed in Type I tests.

6.2.2.3 Type II Loading

The maximum shear stress that could be applied to a [£45]g tube was limited by

the capacity of the load stand. In fact, failure of a [£45] tube by torsional loading was not

20 T 1
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Stiffness 10
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Cycle
Figure 6.42: [145]; Type IA Loading
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possible. Because the [£45]; tubes have such a large diameter (4 inches), the torsional
rigidity is very large, thus requiring a very large torque to produce a moderate level shear
stress. The shear and axial responses of a [145]; tube subjected to Type II loading are
shown in Fig. 6.43. The cyclic shear responses have been offset to enhance the clarity of
Fig. 6.43a, while the axial responses in Fig. 6.43b were not. Both shear and axial
responses are seen to be linear elastic. AE was initially heard at the shear stress of
approximately 6.5 ksi and followed the Kaiser effect. The shear and axial stiffnesses are
displayed graphicaily in Fig. 6.44. The shear stiffness was degraded by only 6% and the
axial stiffness degraded 14%. Relative to the axial tests (Type I and IA), the decrease in

stiffness for torsional loading (Type II) is minimal for the range of loads applied.

6.3 Ti-15-3 Creep Tests

Short term creep tests were conducted on bulk Ti-15-3 to gain a better
understanding of the creep response of SiC/Ti composites. It is necessary to know the
response of the constituents in order to understand the composite response. The fibers are
elastic, but the matrix is elastic-viscoplastic. The creep response of the matrix is then
crucial in determining the composite creep response. Itis acknowledged that it would have
been more beneficial to conduct experiments on as-fabricated Ti-15-3 (a fiberless
composite) because the fabrication process changes the material properties. However,
only bulk Ti-15-3 was available at the time. All tests were conducted at room temperature

on dog-bone tensile specimens.

Three specimens approximately 0.11 in. thick by 0.20 in. wide were tested in load
control to failure. The specimens were 6 in. long with a gage length of 3 in. A single
longitudinal strain gage was used to measure axial strains. The axial modulus was found to

be 11.9 Msi from low level tests. Loading rates of 20 Ib/sec and 50 1b/sec were used.
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Table 6.3: Ti-15-3 Loadings
 Specimen #1 Specimen #2
e Time o Time
ksi sec ksi sec
60.6 226 79.5 266
80.3 278 91.2 269
90.6 272 96.4 265
100.1 577 102.2 607
110.2 26° 109.6 41°
a. Failurc
b. Failurc

The load histories for specimens #1 and 2 are presented in Table 6.3. As shown in

the stress-strain diagram of Fig. 6.45a specimen #1 exhibited no creep until the stress of
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100 ksi was applied. Creep began in specimen #2 at the stress of 96 ksi (Fig. 6.45b). The
creep strains for specimen #2 at 102 ksi were much higher than those for specimen #1 at
100 ksi, as shown in Fig. 6.46. This can be attributed to the faster loading rate for
specimen #2, 50 Ib/sec versus 20 Ib/sec, as well as the higher stress level (102 ksi to 100
ksi). The other difference between loadings on specimens #1 and 2 was that specimen #2
was completely unloaded after each cycle, while specimen #1 was only unloaded after the

applied stress of 100 ksi. Both specimens crept to failure at the stress of 110 ksi.

It is important to know the response of the material to monotonically increasing
loads to compare and contrast the creep response with the time independent component of
plastic response. Specimen #3 was tested to failure at a load rate of 20 1b/sec. The
response shown in Fig. 6.45 indicates that creep does not occur until the transition region
between the elastic and perfectly plastic regions is reached. It is noted that the elastic

response from all three specimens was slightly nonlinear. Also, significant necking
04—
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Figure 6.46: Ti-15-3 Creep Response
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resulting in a cross section approximately 50% of its original area occurred at the failure

surface of all three specimens.
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CHAPTER 7

COMPARISON OF THEORY AND EXPERIMENT

The validity of the theoretical model presented in Chapters 2 and 3, henceforth
known as the debonding unit cell model (DUCM) to distinguish it from other models that
consider imperfect bonding, must be verified through comparison with experimental data.
In the following, DUCM predictions are compared with experimental data from multiaxial

tests conducted on unidirectional [04) and angle-ply [+45]g tubular SiC/Ti specimens.

For transverse tensile loading theoretical predictions obtained from the method of
cells (Aboudi, 1991) will also be presented to illustrate the differences in the treatments of
the fiber/matrix interface. The method of cells predictions are made using the flexible
interface model (Jones and Whittier, 1967). The traction-displacement interfacial
constitutive relations are linear, thus the interfacial model represents a predetermined
amount of imperfect bonding and not the debonding process. In DUCM the interfacial
tractions are determined by a function that increases, reaches a maximum, then decreases
to zero as interfacial displacements increase. The model is intended to represent the
debonding process rather than a predetermined state of imperfect bonding. Both models
use the elastic-viscoplastic model of Bodner and Partom (Bodner, 1987) for the matrix

constitutive relations.

There is however an unresolved issue. What are the interfacial properties? DUCM
requires values for the normal interfacial separation strength, shear strength ratio, normal
and tangential characteristic lengths, and the coefficient of kinetic friction between the two

sides of the interface after failure. In theory at least, these interfacial properties can be
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measured experimentally as discussed in Chapter 4. If the interfacial properties were
determined from such a set of experiments then the response of a composite composed of
a doubly periodic array of fibers could be predicted provided the model is correct.
However, real composites, particularly the ones used in this experimental program, are not
truly doubly periodic (Fig. 5.1) but are more random in nature due to fiber misalignment.
For perfectly bonded fiber/matrix interfaces this deviation from the assumed packing
sequence is insignificant, as shown in Section 4.1. Conversely, for imperfect bonding the
response of a unit cell is quite sensitive to its aspect ratio; the random nature of the actual
material causes the response to be nonuniform. The dc-bonding process begins sooner at

locations where high local stress and strain fields exist than it does elsewhere.

The fiber/matrix interface in SiC/Ti composites with coated fibers, as discussed in
Section 5.1, is generally considered to be brittle and weak. However, if a unit cell is to be
considered an RVE it must represent the average behavior of the composite at large. In
some cases cxpcﬁmcntal results indicate that the overall composite response is that of a
composite with a ductile interface. The conclusion to be drawn here is that if the loading
on all interfaces is uniform then the interfacial properties may be experimentally measured
at any representative interface. Otherwise, the interfacial properties must be determined
from a statistical analysis of all interfaces in the composite, because by definition of a
RVE the unit cell must represent the composite at-large to be a valid micromechanical
model. At present it is unclear how to perform the necessary statistical analysis to
determine the effective interfacial properties for a nonuniform composite. Therefore,
interfacial properties must be treated as parameters and a curve fitting technique used to

match predicted effective response with experimentally determined response.

Sometimes it is useful to be able to predict yield surfaces so that it is not necessary
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to conduct a large quantity of experiments to determine the yield surfaces for a material.
Comparison of a predicted yield surface with a limited number of experimentally
determined yield points can be very helpful in understanding material behavior. However,
many viscoplastic theories do not include a yield criterion, thus no yield surface exists.
DUCM uses the unified viscoplastic theory of Bodner and Partom (Bodner, 1987) which
does not use a yield criterion. Hence, in its current form, DUCM can not predict yield
surfaces. However, Pindera and Aboudi (1988) included the Mises yield criterion in the
method of cells to enable the prediction of initial yield surfaces. Yield surfaces predicted
by the method of cells, including the effects of an imperfect fiber/matrix interface, are
presented in this chapter to aid in understanding the experimentally observed material

response.

7.1 Unidirectional Composites

Theoretical predictions are compared with experimental results from Type I, Type
II, and Type I tests on [04] SiC/Ti tubes. In the following, perfect bonding will be
denoted PB, a debonding or imperfect interface will be denoted DB, and an interface with

no bond between the fiber and matrix will be denoted NB.

7.1.1 Initial Elastic Properties

A comparison between the predicted and experimentally determined initial elastic
properties was displayed in Tuble 6.1. The comparison is shown graphically in Fig. 7.1 as
well. Predictions from DUCM for both perfect and no bond conditions are presented to
establish a range where the experimentally determined values are expected to lie. Thermal

residual stresses are not considered for these predicted properties.

The histograms in Fig. 7.1 are for initial modulus, Poisson’s ratio, and axial shear
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modulus. Experimental data from strain gages located at the mid-length of all [04] tubes
tested are presented along the horizontal axis of each graph. Only data from the initial, low
load level tests are presented. Axial and transverse moduli, Eyy and Ejy, respectively, are
compared to accent the differences between axial and transverse moduli. Likewise for the
major and minor Poisson’s ratios, Vi and vop. Data from only four strain gages was
available for the transverse modulus and minor Poisson’s ratio because just one tube was

subjected to internal pressure.

The model predicts that the condition of the fiber/matrix bond has no effect on
either the axial modulus or the major Poisson’s ratio. However, for transverse modulus,
minor Poisson’s ratio, and axial shear modulus, G5, a wide range of values are predicted

as the condition of the bond varies from PB to NB.

The experimental data for axial modulus is very uniform and agrees extremely
well with the prediction. As observed in Section 6.1 three of the four experimentally
determined values for transverse modulus are very uniform, while the fourth value is
much lower. The three uniform values are approximately 10% below the PB prediction.
Experimental data for major Poisson’s ratio is slightly more scattered, but agrees
reasonably well with the predicted value. The three uniform experimental values for minor
Poisson’s ratio are approximately 18% below the prediction for perfect bonding. The
experimentally determined values for the axial shear modulus are quite uniform and on

average are just 7% below the prediction for perfect bonding.

These comparisons reveal that the experimentally determined properties are at
least bracketed by the PB and NB predictions. Reasonably good agreement is observed
between experimental initial elastic properties and model predictions for perfect bonding.

There are two possible explanations for why the model predicts a slightly higher
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transverse modulus, minor Poisson’s ratio, and axial shear modulus. It is possible that the
specimens in the as-fabricated state do not have perfectly bonded interfaces. Second, the
representation of the composite with a repeating unit cell model, while making the

analysis possible, may simply overestimate the actual elastic properties.

7.1.2 Type I Loading

The response of a [04] tube subjected to Type I loading was linear elastic to failure.
No appreciable acoustic emissions were heard prior to failure. Comparisons between
DUCM and the experimental data are shown for loading cycles #11 and 12 in Fig. 7.2.
Excellent agreement is observed in Fig. 7.2a for the axial stress-axial strain response.
DUCM predicts a linear elastic axial response for PB and NB. No stiffness degradation is
predicted for axial loading and none was observed experimentally. As mentioned above
for initial axial modulus (Fig. 7.1), the predicted axial stiffness agrees well with that
observed experimentally. Figure 7.2b compares the predicted transverse strain-axial strain
response with that determined experimentally. DUCM predicts no change in the slope of
the transverse-axial strain response (Poisson’s ratio) regardless of the condition of the
fiber/matrix bond. Once again the predicted response is observed to agree well with the
experimental data. It is interesting to note that the experimental transverse strain-axial
strain data is slightly nonlinear and that cycle #11 displays a hysteresis type behavior. At

present this phenomenon is unexplained.

No inelastic deformation was observed in Type I tests because the tube failed
outside the gage section due to stress concentrations associated with the grips.
Fractography conducted by Lerch (1993) indicated that failure initiated at the bolt hole
where the pin transmitted applied loads to the tube. The failure can be summarized as

follows. In the cycle prior to failure (#12) the adhesive bonding the tube to the top grip
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failed at a gage section stress of 119 ksi. Failure initiated at the bolt holes in the top grip
during cycle #13 at a gage section stress of 108 ksi. The fracture surface propagated to the
bottom of the steel plug bonded to the inside of the tube where it continued transverse o
the fibers until complete failure occurred (Fig. 6.16). Visual microscopy revealed that the
portion of the fracture surface transverse to the fibers occurred where a moly wire existed

in one of the plies.

A linear elastic finite element analysis was performed on the tube and fixture
assemblage using ABAQUS (Hibbitt, Karlsson, and Sorensen, Inc., 1989). Axisymmetric
elements were used to model one half of the assemblage (using longitudinal symmetry) in
the longitudinal, radial plane. The results showed that not only was the longitudinal stress
concentration factor approximately 1.65, but that significant bending stresses developed in
the tube at the bottom of the steel plug due to the restraint it provided against radial
contraction associated with longitudinal tension. These bending stresses are the reason for

the clean, straight failure transverse to the fiber direction (Fig. 6.16).

Initial yield surfaces in axial-shear stress space and axial-transverse stress space
predicted by the method of cells are shown in Fig. 7.3. Stresses are normalized with
respect to the matrix yield stress in uniaxial tension, Y=110 ksi. The effects of thermal
residual stresses associated with an effective fabrication cool-down of 1500°F are
included in all predictions. Predictions are shown for perfect bonding as well as for two
stages of imperfect bonding. Imperfect bonding is observed to reduce the size of the initial

yield locus.

Experimentally determined points are also plotted with the predicted initial yield
surfaces. The apparent failure stress of 119 ksi for Type I loading is plotted on the

horizontal axis. Due to the stress concentrations from the grips (discussed above) the
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stress in the grip region was much higher than the apparent failure stress in the gage

section.

7.1.3 Type 1I Loading

The inelastic shear deformation of a [O4] tube subjected to Type II loading was
clearly nonuniform around the circumference of the tube at the mid-length, as shown in
Fig. 6.20. In cycle #13 the response from rosette #2 was linear, while there was a very
abrupt knee and a perfectly plastic type response from rosette #3. The reader is reminded
that Type II tests were conducted in rotation control. Thus, if the material response was
uniform there would have been equal shear strains measured by all the rosettes at the mid-
length of the tube. The large uneven horizontal spacing between experimental data points
in the response of rosette #3 to loading cycle #13 shown in Fig. 7.4b suggests that not only
is the inelastic deformation nonuniform but also sudden. The sudden increase in acoustic
activity that corresponds with the observed knee is further evidence of the abrupt nature of

the phenomenon.

Unlike the abrupt knee observed experimentally (Fig. 7.4) the predicted response
of the titanium matrix has a relatively large, smooth transition region between the elastic
and perfectly plastic region as shown in Fig. 7.5. Plotting the proportional limit stress of
40 ksi obtained from rosette #3 in cycle #13 of the Type I tests on the predicted initial
yield surfaces (Fig. 7.3a) shows that the nonlinearity occurred prior to predicted initial
yielding for a perfectly bonded composite. Thus, the knee in the shear response can only

be associated with yielding if there is imperfect bonding between the fiber and the matrix.

DUCM was used to predict the shear response of a unidirectional [0] composite.

First the fabrication cool-down cycle was simulated by a uniform temperature change
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(A'1'=-1500"F), then an axial shear strain ot 1.U% was apphed. All attempts to predict the
unloading response resulted in a system of equations that could not be solved within the
appropriate equilibrium tolerances prior to completing the unloading cycle. The properties
for the interface model were chosen from a trial and error curve fitting procedure to be:
G,=15 ksi, a=3.3, 5=10x10C in., u=0. Both axial shear and transverse tensile loading on a
[0] lamina were considered in the curve fitting procedure. The interface properties chosen
represent the best fit to both loadings considered and will be used throughout the
remainder of this work for [0] lamina. The DUCM prediction is compared with
experimental results from rosettes #2 and 3 in Fig. 7.4. DUCM predictions for PB and NB

are also shown in the figure to provide extreme conditions.

Figure 7.4 shows excellent agreement between the DUCM prediction and
experimental results up to the shear stress of 40 ksi at which point the predicted response

displays an instability while the observed experimental response exhibits a large
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instantaneous reduction in stiffness. The model predicts sudden debonding to occur at the
shear stress of 40 ksi. Due to the sudden nature of the debonding event the solution is very
difficult to obtain and it is necessary to substantially reduce the size of the applied
displacement increment. The parameter A describes the condition of the bond at a point
along the fiber/matrix interface. For perfect bonding A=0. Bond failure occurs when A=1.
For the shear strain of 0.5453% the maximum value of A along the interface was 0.44. But
for the next displacement increment (¥12=0.5494%) the maximum value of A was 2.02 and
bond failure has occurred over more than 50% of the interface. The model indicates that
matrix plasticity has not yet occurred, in fact the predicted maximum effective stress in the

matrix is reduced from 101 ksi to 89 ksi by the sudden debonding. Here effective stress is

~ (3
O, = J35i5ij (7.1)

where s;; are the stress deviators defined by eqn. (2.4). The maximum effective stress of

defined to be

101 ksi is very near the yield stress (110 ksi) of the matrix.

The model considers debonding to be macroscopically uniform, but
experimentally debonding occurred in a nonuniform manner. The predicted instability is
due to the sudden brittle nature of the debonding event. The interfacial debonding model
dictates that the effective response approaches that predicted for no interfacial bond after
debonding begins. The predicted instability was not observed experimentally because, in
the experiments, debonding was a local event and only global stresses (T12=Tc/J) were
measured. Because the debonding process was nonuniform in the tube, the global stresses
measured (actually torque was measured and shear stress was calculated) are not
representative of the local stresses present during and after debonding. Therefore, on the

local level it is not possible to determine whether the predicted instability does or does not
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occur experimentally. In the presence of nonuniform debonding it is possible that the local
response is governed by local stresses even though the global response is governed by
displacements, or in this case rotations. If this were the case, no significant instability
would be observed on the global level. Notice that if the predicted response obtained after
the instability were shifted vertically in Fig. 7.4, the comparison between theory and

experiment would be very good.

It is difficult to compare predictions from DUCM with the experimental results
from Type II tests due to the nonuniform abrupt debonding present. Strain gages provided
local response while the torsional load cell provided global, or average, response. Thus,
experimentally it was only possible to plot global stresses versus local strains, which
provided neither the global nor the local response. Conversely, macroscopically uniform

debonding is assumed in DUCM.

Another possible contributing factor in the difference between the predicted
response and the experimental response is the frictional forces at the interface. The
presence of frictional forces at the interface allows tractions to be transmitted to the fiber
after debonding has occurred. DUCM has the capability to account for frictional forces
after bond failure by making the coefficient of friction greater than zero. This was
attempted but the finite element program was unable to converge on a solution that
satisfied equilibrium within the given tolerances, therefore the coefficient of friction was

taken to be zero.

7.1.4 Type 111 Loading

The axisymmetric finite element modet discussed for Type I loading was also used

to study the stress distributions in the test specimen assemblage under internal pressure
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and combined internal pressure and axial compression. The resulting axial stress, 611, and
circumferential stress (or transverse stress for a [04] tube), G2, distributions are shown in
Fig. 7.6. The figure illustrates the stress concentrations caused by the fixture. The simple

equations for internal pressure loading of a thin walled cylinder

= Pr _ pr
022 = _l— and 0” = —2_f (7.2)

are satisfied at the mid-length of the tube (Fig. 7.62). Application of an axial compressive
stress equal in magnitude to the tensile axial stress ©1=pr/2t creates a zero net axial stress

at the mid-length of the tube (Fig. 7.6b).

The proportional limit transverse stress of 40 ksi is plotted on the predicted initial
yield surface (Fig. 7.3b). This point lies well within the predicted initial yield surface for
perfect bonding. Therefore, the knee (proportional limit) appears to be associated with
damage rather than yielding. This is in agreement with virtually all other work in the

literature for transversely loaded unidirectional composites.

DUCM predictions are compared with the final two cycles (#14 and 15) of Type 1II
loading in Fig. 7.7. The same interfacial properties were used for DUCM as discussed for

Type 1l loading. The loading sequence for the predictions was as follows:

. thermal loading (AT=-1500°F) associated with fabrication cool-down
. apply a transverse strain of 0.25%

. apply and unload an axial strain of 0.10%

. apply and unload a shear strain of 0.10%

. unload the transverse strain

. apply a transverse strain of 0.5%.

NN bW N -

Predictions from DUCM for PB and NB are also shown to indicate extreme conditions.
The predicted transverse responsc for no bond (DUCM, NB in Fig. 7.7) illustrates the

cffects of the thermal residual stresses. A distinct knee associated with overcoming the
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compressive residual stresses at the interface occurs at approximately 18 ksi. For clarity
the no bond prediction has been offset such that it starts at the same point as data from

cycle #15.

Comparisons are made between the theoretical model and the response from both
rosettes #1 and 2 in Fig. 7.7 because of the differences in the experimental data at different
locations on the tube. The model (DUCM, DB) predicts a knee at the transverse stress of
approximately 23 ksi that is associated with overcoming the thermal residual stresses. This
knee was not observed in the Type III tests possibly because of the additional restraint to
circumferential deformation provided by the fixtures. The Type I1I tests displayed a larger
elastic region than results presented in the literature for transverse tension tests conducted
on flat specimens. It is surmised that the additional constraint provided by the fixtures
served to retard the debonding process. The vertical spike present in the predicted
response (DUCM, DB) at the transverse strain of 0.25% is created by an increase and then
a decrease in the effective transverse stress during axial and shear loading and unloading,
while the transverse strain is held constant. This is probably caused by changes in the local
stress fields in the fiber and matrix. Transverse unloading began at a lower stress (05,=43
ksi) than had been present prior to the biaxial loading (09p=45 ksi). The predicted
unloading response is bilinear due to the compressive radial residual stresses that clamp

the matrix around the fiber.

Permanent axial strains were observed experimentally from both strain gage
rosettes but were not predicted by DUCM. Prior to transverse unloading the maximum
effective stress predicted in the matrix was 116 ksi which is greater than the yield stress
(110 ksi) of the matrix for uniaxial tension. Thus, the model predicts local plastic strains,

but they are insufficient to cause significant plastic strains in the composite (overall) stress
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tield. The fact that DUCM under-predicted the transverse plastic strains for this loading

cycle is significant in that it shows that the model does not accurately represent all the

deformation mechanisms for this loading cycle.

The flexible interface model used in the method of cells (MC) is compared with
DUCM in Fig. 7.8. The same loading sequence was applied using the method of cells as
discussed above in conjunction with Fig. 77 The normal and tangential bonding
parameters for the flexible interface model were taken to be R, = R, = 10 x 107%in/ksi.
The linear interfacial constitutive equations cause the response predicted by the method of
cells to be degraded but linear in the range shown in the figure. Again it is observed that
the flexible interface model does not provide a representation of the debonding process but

rather it models a predetermined amount of imperfect bonding.

The predicted and experimental axial strain-transverse strain response for Type III
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loading is shown in Fig. 7.9a. The DUCM prediction is based upon the loading cycle
discussed above in conjunction with Fig. 7.7, but for clarity only data from the two
transverse loading cycles is presented. The agreement between theory and experiment is
very good except, as discussed above, DUCM did not predict permanent strains after

loading to the transverse strain of 0.25% and then unloading.

Predicted and experimental axial shear responses are compared in Fig. 7.9b.
DUCM accurately predicted the axial shear stiffness but did not predict the permanent
shear strain observed experimentally. It is noted that residual stresses do not significantly

affect the response in the range shown in the figure.

7.2 Angle-Ply Composites

Theoretical predictions are compared with experimental results from Type I, Type
IA, and Type II tests on [£45]¢ SiC/Ti tubes. As for the discussion regarding unidirectional
tubes perfect bonding will be denoted PB, a debonding or imperfect interface will be
denoted DB, and an interface with no bond between the fiber and matrix will be denoted

NB.

7.2.1 Initial Elastic Properties

The predicted and experimentally determined initial elastic properties for a [+45];
tube were presented in Table 6.2. The comparison is repeated graphically in Fig. 7.10. The
three histograms show the initial axial modulus, E,,, Poisson’s ratio, Vyy, and shear
modulus, G, Predictions from DUCM for the perfect and no bond conditions are
presented to establish a range where the experimentally determined values are expected 1o
lie. Thermal residual stresses are not considered in the predictions. Experimentally

determined data from strain gages located at the mid-lengths of three [£45] tubes are
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presented along the horizontal axis of each graph.

The experimentally determined axial moduli range from 15.1-21.0 Msi, with the
average being 18.1 Msi. The wide range of experimental values is the result of material
nonuniformity, or more specifically, local variations in the fiber volume fraction. The
highest experimental axial modulus (21.1 Msi) is 8% below the predicted value for perfect
bonding. In order to explain this discrepancy a study using the method of cells model was
conducted to determine the sensitivity of the predicted axial modulus to fiber modulus,
matrix modulus, fiber orientation, and fiber volume fraction. The method of cells is an
analytical model that allows elastic properties to be predicted very quickly. Because no
debonding was being considered it was not necessary to use DUCM. Only one of the
above mentioned variables was changed at a time. For the fiber modulus of 58 Msi, matrix
modulus of 13.2 Msi, fiber volume fraction of 0.40, and fiber angles of +45°, the predicted
axial modulus was 22.29 Msi while DUCM predicted it to be 23.0 Msi. The results of the

sensitivity study are summarized in Table 7.1. The variations required to produce the

Table 7.1: Sensitivity Study

——
——— —

Fiber modulus, Eq=40 Msi Fiber vol. fraction, ¢=0.30
E=50 Msi c=0.35
Matrix modulus, E,;=10 Msi Fiber angle, 6=140°
En=12 Msi 0=150°

discrepancy between experimental and predicted initial axial modulus for perfect bonding
were much larger than could be expected in the specimens. The most likely explanation
for the low measured modulus is that imperfect fiber/matrix bonding exists after

fabrication. Figure 7.11 shows the global and material principal stresses predicted by a
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laminated tube analysis program, developed by Derstine and Pindera (1989), for a [+£45]
tube subjected to thermal, axial, and torsional loads applied independently. While the
program is capable of nonlinear analysis, only a linear elastic analysis was performed.
Thus, the values presented in the figure may be scaled provided the stresses remain in the
linear elastic range. The figure shows that cooling the composite tube down during
fabrication creates transverse tensile, Gpy, stresses in all plies. Because transverse tension
causes debonding, the thermal strcsseé associated with fabrication cool-down initiate the

debonding process.

The range of shear moduli predicted for PB and NB is relatively small (Fig. 7.10)
and the measured values all fall within the predicted range, but the average of the
measured values (9.08 Msi) is 16% below the predicted value for perfect bonding. This
provides further evidence that the as-fabricated |£45]; tubes do not contain perfectly

bonded interfaces.

Poisson's ratio is predicted to increase as the fiber/matrix bond is degraded (Fig.
7.10). However, the average measured Poisson’s ratio is 4% below the prediction for
perfect bonding. This data is in conflict with the explanation presented above; that the low
measured initial axial and shear moduli are due to imperfect fiber/matrix bonding. No

logical explanation can be given for this inconsistency at this time.

7.2.2 Type I Loading

Figure 7.11 indicates that applying axial load to a [£45] tube creates axial shear
stresses, Ty2, as well as transverse tensile stresses, Op9, in all plies. Both axial shear and
transverse tensile stresses cause the fiber/matrix interfaces to debond. Due to the material

nonuniformity debonding occurs at different applied stress levels at different locations.
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Figure 7.12: [£45]; SiC/Ti Predicted Initial Yield Surfaces
This is evident from the observed continuous stitfness degradation, in contrast to the
sudden degradation observed for Type II loading on a [04] tube, as well as from the

gradual increase in acoustic activity.

Predicted initial yield surfaces in the axial-shear stress space are plotted in Fig.
7.12. As for the [04] predictions stresses are normalized with respect to the matrix yield
stress in simple tension, Y=110 ksi. Thermal residual stresses associated with cooling the
composite from the fabrication temperature are included. Different normal and tangential
bonding parameters were considered to illustrate the effects of imperfect bonding. Figure
7.12 shows that as the interfacial bond is degraded the initial yield surface translates along
the horizontal axis in addition to decreasing in size. The proportional limit and failure
stress from Type I tests are also shown in the figure. The location of these points (well

within the predicted yield surface for perfect bonding) indicates that interfacial damage
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precedes and accelerates matrix yielding.

A comparison between the predicted and experimentally observed responses for a
[£45], tube is shown in Fig 7.13. Residual stresses associated with fabrication cool-down
are included and the interfacial properties were taken to be 6,=15 ksi, 0=2.0, 8,,=10x10'6
in., 8=8,=108,, and j=0. While both [04] and [£45] tubes were fabricated from the same
materials using the same process they exhibited different types of nonuniform response.
The initial elastic properties were uniform for [04] tubes but not for [145] tubes. The
individual interfaces in each type of tube are the same but are loaded differently. Because
the interfacial properties used for a RVE must be representative of the statistical average
rather than the properties of an individual interface the use of different properties for
[£45], tubes is justified. Previously, for simplicity the characteristic length, 6, had been
assumed to be the same in the normal and tangential directions. This is not necessarily the
case and for [£45]; laminates the characteristic length in tangential directions was taken to

be an order of magnitude larger than in the normal direction.

The experimental data lies within the range predicted by DUCM for the perfect
(PB) and no bond (NB) conditions. The stiffness was degraded with each load cycle and
approached the NB prediction as the maximum applied stress level in each cycle
increased, thus indicating that bonding between the fiber and matrix was initially present.
At the higher applied stress levels creep response was observed experimentally, as
indicated by the data points that lie on a horizontal line and are spaced closer and closer
together for increasing axial strain in Fig. 7.13a. For clarity the unloading response is not
shown for the loading cycles when large creep strains were measured. The stiffness
degradation and nonlinear response is of primary importance in Fig. 7.13a. The predicted

response (DUCM, DB) somewhat resembles the experimental data but agreement could
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be better. Initially the predicted response was slightly more compliant than the
experimental response. However, the nonlinear response observed experimentally was
more abrupt than DUCM predicted. Although not evident from the figure the model
predicted local plastic strains to occur in conjunction with nonlinear strains associated

with debonding. This will be discussed in more detail in the subsequent section.

The predicted cyclic axial response is compared with two Type I loading cycles of
experimental data in Fig. 7.13b. Accumulated axial strains associated with shear coupling
and creep have not been included in the experimental data so that only cyclic axial loading
is compared in the figure. DUCM predicts a continuously degraded axial stiffness as well
as permanent axial strains. The experimental initial axial stiffness was less than that
predicted by DUCM due to debonding that occurred in previous loading cycles.
Experimentally, more permanent strain was present after each cycle than was predicted,
however, the maximum axial strain in each cycle was not the same for theory and

experiment.

Transverse strain-axial strain response is plotted in Fig. 7.14. The transverse strain-
axial strain response lies within the predicted range for perfect bond (DUCM, PB) and no
bond (DUCM, NB) except when large creep strains have been accumulated. The
experimental data lies closer to the perfect bond prediction than to the debonding interface
prediction (DUCM, DB) suggesting that Poisson’s ratio (defined by the slope of the
wransverse strain-axial strain response) is not as sensitive to interfacial debonding as the

model predicts.

7.2.3 Type 1A Loading

Type 1A experiments were conducted to determine how much of the permanent
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strain accumulated during Type I tests was time-dependent and how much was time-
independent. Figure 6.35 summarizes the results quite well. At low applied stress levels
(below 42 ksi) the strain accumulation is due primarily to time independent coupling
between shear and axial strains. But at higher applied stress levels (above 42 ksi) the strain
accumulation is due primarily to creep. Creep strains increase dramatically at very high

applied stress levels. Clearly, room temperature creep is a significant design consideration.

Short term creep tests conducted on bulk Ti-15-3 at room temperature indicated
that creep behavior does not begin until the yield point has been reached (Fig. 6.45). Since
the theoretical model uses a unified viscoplastic theory to describe the material behavior
of the constituents it is possible to predict the creep response. The predicted creep
response of as-fabricated Ti-15-3 is shown in Fig. 7.15b for applied stresses of 100, 110,
120 and 130 ksi. The yield point of as-fabricated Ti-15-3 is 110 ksi (Fig. 7.15a). No creep

is predicted for the applied stress of 100 ksi, but creep response is observed for the other
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three higher applied stress levels. These predictions are consistent with the experimentally
obtained creep response of bulk Ti-15-3 in that creep does not occur until after the yield

stress has been surpassed.

In principle DUCM is therefore capable of predicting creep response in laminated
MMC. However, the current laminate analysis program can only apply thermal and strain
loadings to a laminate. In order to be able to predict creep response it is necessary to apply
stress loadings. This is not possible at the present time but should be considered in future
work. In light of the observation that creep response is initiated once the yield point has
been reached it is instructive to consider the maximum effective stress in the matrix. Creep
in the matrix is expected to occur once the maximum effective stress in the matrix exceeds
110 ksi. The maximum effective stress in the matrix is plotted against the applied axial
strain in Fig. 7.16 for a [+45]; laminate with a debonding interface. As before, residual

stresses due to an effective cool-down of 1500°F were considered. These residual stresses
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cause the maximum effective stress in the matrix to be approximately 100 ksi initially. The
interface properties used were the same as discussed for Type I loading: 0y=15 ksi, 0=2,
8,=10x10° in., 8=8,=105,, and p=0. Effective swess (eqn. (7.1)) is calculated for each
matrix element in the finite element mesh (Fig. 3.1). The effective stress in one element
reaches 110 ksi at a composite stress of 17.3 ksi. The first significant creep was observed
experimentally for an applied stress of 42 ksi which corresponds with a maximum
effective stress of 123 ksi. This demonstrates consistency between DUCM and the
experimental data because the initiation of measurable composite creep is expected to be
caused by high effective stress in a somewhat larger portion of the matrix than just one

finite element.

7.2.4 Type II Loading

Type 11 loading was limited by the capacity of the load stand as shown inFig. 7.12.
The experimental response appeared to be linear elastic in each loading cycle but was
degraded slightly with each cycle (Fig. 6.44). Figure 7.11 shows that torsion of a [145]
tube causes tensile transverse stresses, 07, in the third (and second) ply and compressive
transverse stresses in the fourth (and first) ply. No shear stresses, 112, are present in any
ply. Torsional loading is expected to have a fairly minimal effect on stiffness degradation
because only two plies experience stresses, in this case tensile transverse stresses, that
cause debonding. The shear stiffness of the tubes varied with location, thus results from
two strain gages are compared with theoretical predictions. The shear response is plotted
at two different scales in Fig. 7.17. The larger scale (Fig. 7.17a) shows the predicted shear
response to be slightly nonlinear for high shear stresses. The smaller scale (Fig. 7.17b)
provides a better view of the comparison between theory and experiment. Perfect bond

and no bond predictions are shown to indicate extreme conditions. The residual stresses
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and interface properties used for the debonding interface prediction are the same as used
previously for [£45], tubes. The data from rosette #2 falls outside the predicted range,
indicating that this strain gage could have been located where there were fewer than
average fibers. To reiterate, both axial and shear stiffnesses measured at different points on
the tube varied significantly due to material nonuniformity. The data from rosette #3 is in

very good agreement with the debonding interface prediction (DUCM, DB).

7.3 Discussion

The elastic-viscoplastic model of Bodner and Partom (1987) and an extension of
the interfacial debonding model of Tvergaard (1990) are incorporated in the current
theoretical model (DUCM) to predict the inelastic response of metal matrix composites
with debonding fiber/matrix interfaces. Results from DUCM have been compared with
experimental results from a limited number of different types of multiaxial tests. DUCM
was seen to predict the inelastic response of metal matrix composites with debonding

fiber/matrix interfaces reasonably well.

The framework of the model is such that virtually any constitutive theory may be
used. The viscoplastic theory of Bodner and Partom was chosen for this work because of
its simplicity. Any viscoplastic theory could be used in its place. The debonding model of
Tvergaard was chosen because it provided a rational approach to combined normal and
tangential fiber/matrix debonding. For purely normal separation the interfacial constitutive
relations resemble the dependence of interatomic forces on interatomic separation.
However, there is no physical evidence that on an atomistic scale a fiber/matrix interface
behaves as described by the model. Thus, the model is viewed as phenomenological in
nature. Any such model that describes interfacial tractions in terms of interfacial

displacements could be implemented using DUCM. This is one of the outstanding features
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of the model. It can be used to study how well different interfacial constitutive models
predict the local and overall stress and strain fields in composites with debonding

interfaces.

The occurrence of nonuniform debonding in a composite dictates that a statistical
average of the interfacial properties be used to describe an effective interface for a
repeating unit cell analysis. Currently, the properties of such an effective interface must be
treated as parameters and determined by curve fitting experimental data. The usefulness of
a model that requires parameters to be determined from comparisons with precisely the
response to be predicted is limited. Thus, unless composites can be manufactured such
that debonding occurs in a uniform manner, it may be more useful to develop stochastic

models that are better suited for nonuniform processes.
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CHAPTER 8
CONCLUSIONS

A micromechanical model has been developed to predict the inelastic deformation
of laminated metal matrix composites in the presence of interfacial debonding. The
representative cell of the model was considered to be in a state of generalized plane strain,
enabling a quasi two-dimensional analysis to be performed while retaining the capability
to apply loads in all three coordinate directions. Residual stresses and matrix
viscoplasticity were explicitly included in the model. Interfacial tractions were related to
interfacial displacements by a function that increases to a maximum, decreases, then
vanishes for monotonically increasing interfacial displacements. The model was
compared with experimental data from multiaxial tests conducted on SiC/Ti tubular

specimens.

Several technologically important conclusions can be reached based upon the
results of the experimental program. Following are key conclusions presented in the order

of their perceived importance.

[0] SIC/Ti lamina

«Fiber/matrix interfacial damage is nonuniform and a major factor in the transverse
and shear responses.

«The axial shear response exhibits a sudden loss of stiffness.

+Axial shear loading results in brittle fiber/matrix debonding prior to initial
yielding.

«Fiber/matrix debonding introduced during shear loading degrades the shear
stiffness.
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Trangverse tensile loading results in fiber/matrix interfacial debonding prior to
initial yielding.

«Inelastic coupling between transverse and shear strains occurs for shear loading in
the presence of constant transverse stress.

*The uniaxial tensile response is independent of the condition of the fiber/matrix
interface.

[345], SIC/Ti laminates
«Fiber/matrix interfacial damage is a major factor in the tensile response.
«Interfacial damage precedes and accelerates matrix yielding for tensile loading.

«The axial modulus exhibits a damage induced degradation of as much as 50% *.
cyclic tensile tests to sequentially higher stress levels.

«At room temperature longitudinal creep strains occur at applied stresses less than
50% of the stress level required to initiate creep response in bulk Ti-15-3.

*Inelastic coupling between axial and shear strains occurs for shear loading in the
presence of constant axial stress.

«Imperfect bonding exists in the as-fabricated material as a result of thermal cool-
down during processing.

General

*The aspect ratio in a rectangular repeating cell micromechanical model is
insignificant for perfectly bonded composites but is a major factor in determining
the effective response of imperfectly bonded composites.

*Titanium (Ti-15-3) exhibits creep behavior at room temperature.

«Acoustic emissions in SiC/Ti follow the Kaiser effect and provide a good
qualitative indication of when damage is occurring.

«Current fabrication techniques for SiC/Ti tubes need to be improved to obtain a
more uniform distribution of fibers throughout the tube.

+The molybdenum wire weave was observed in most fracture surfaces and reduces
the composite strength.
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APPENDIX A

h

SOLID ELEMENTS

In the present analysis the effective response of the representative volume element
(RVE) is found by averaging the stress and strain fields. This process is simplified by the
use of constant strain elements. Thus, a linear displacement field is employed for each

element.

u(x,y,z) = u;+Cy+Cyz (A.1)
v(x,y,2) = v;+C3y+Cy2 (A.2)
wx,y,2) = w;+Csy+Cqz (A.3)

Here (4;, v;, w;) represents the displacement of node i and C; through Cg¢ are unknown
constants to be determined. Figure A.l1 shows the geometry of an element. The
formulation of the generalized plane strain finite elements proceeds as follows. The four

nodes are designated i, j, k, and [, where node [ is common to all elements in the mesh. By
<—a£>|
k
j bk
]
i
4

Figure A.1: Solid Element Geometry

X
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writing eqns. (A.1-A.3) at nodes j and k the constants C; through Cg can be expressed in

terms of nodal displacements and element dimensions a;, a;, @y, b;, bj, and by (Fig. A.1) as

C, = [(bj-bu;+bu;—bu,}/A (A4)
C, = [—(aj—a,‘) u,-—a,‘uj+ajuk] /A (A.5)
Cy = [(bj=by)v;+byvi-byv,] /A (A.6)
C, = [(a,‘—aj) vi-akvj+ajvk] /A (A7)
Cs = [(bj=b)w+bw;—bw]/A (A.8)
Ce = [(ak—aj) w‘-—a,‘wj+ajw,‘] /A (A9)

where A = agby - aib; is twice the area of the element.

The infinitesimal strains are defined by (€} ={D]}{u), or

1 r - r 1
 a fozax 0 0 0
€yy 0 d/dy O Cy
8" - 0 0 d/0z u - C6 (A 10)
Y,, 0 8/0z9/dy :} C,+Cs '
v.| [879z 0 asax C,
X2
" 0/dy d/dx 0 C,
'xy) N - -

For generalized plane strain, set €, = /(1.0 L), where L is the curent length units, to
ensure a constant strain in the x-direction. This, and substituting eqns. (A.4-A.9) into eqn.

(A.10) yields

-3
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u;
- - v;
L ) o 0 00 0 0 0 O0A]fw
8" = _1- 0 0 ak—'aj 0 0 —ak 0 0 al 0 vj (A,ll)
Yas -(a;—a) O 0 -a, 0 0 a 0 0 Of &
.:Yxl ! bj—bk 0 0 b 0 0 —bj 0 0 0_ Vi
Wi
| ]

or {e} = [Bl{q}, where [B] is the strain-nodal displacement relationship defined by the

matrix on the right hand side of eqn. (A.11) and {q]} contains the nodal displacements.
Hooke's law may be written
{o} = [C]({e} - {€T} - {eP}) (A12)

where (€] is the total strain, {eT] is the free thermal strain, and {eP L] is the plastic strain.

For isotropic materials the stiffness tensor (C] is

[(1=-v})E (v+V)E (v+V)E 0 . . ]
) T 3
2 2
(1 2\;)E (v+£' )E 0 0 0
(1-v3)E
[c] = ! 0 O | @
E
2(1+v) 0
_E
2(1+v)
| 2(1+V)

where E is Young's modulus, v is Poisson’s ratio, andZ=1-3v+ 2v2.

The strain energy, U, of an element is
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U= L{{e}T{o}aV (A.14)
) :

Rewriting eqn (A.14) in terms of the nodal displacements and applying the principle of

virtual work in the usual fashion leads to
(K] {q} = {F}+ {F"} + {F"} (A.15)
where
K] = J[B]T[C] [BldV istheelementstiffness matrix

{FT} = {[B]T[C] {eT}dv is the thermal force vector (A.16)

{FP"} = {[B]T[C] {ePL} dv is the plastic force vector

and {F) is the applied mechanical force vector. The thermal strains are determined from
(eT) = (@)AT, where () contains the coefficients of thermal expansion and AT is a

uniform temperature change. The plastic strains are found by the Bodner-Partom model.
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APPENDIX B
INTERFACE ELEMENTS

________.___————————-___________________—:__-———————-———'—_

Interface finite elements are derived in the following manner (Becker, 1988 and

Smelser and Becker, 1989). The current nodal coordinates are first determined

x"=x"-+ui
)‘.’=)".'+V,'} i=mnnpq (B.1)
3= Z"-"“W"

where the primed coordinates refer to the original coordinate locations; u;, v;, and w; (i =
m, n, p, q) are nodal displacements, and m, n, p, and ¢ are the node numbers as shown in
Fig. B.1. In the figure o, B represent the element end points and A, B represent integration
points. Interfacial tractions for the current load increment are determined by the
increments of interfacial displacement discontinuities, which will subsequently be referred

to as displacements, in the n, ¢, b coordinate system.

Interface
element

y’

Figure B.1: Interface Element Geometry



187

Uy = (Xp=X,)S= (V= Yp) €
ul = (X, =) s = (¥Y,—Yg)¢€
u;; = (X=X 4 (V= Y,)s (B2)
up = (X, =x)c+ (¥,=y,) s
=ty
uE:zn—Zq

Here ¢ = cos 0 and s = sin 0 and «, P superscripts designate the end points of the element.

Displacements are determined at the integration points A, B

u? = E’;u? +nu£3 ,
B i=ntb (B.3)
ul =nu+Eu
where
E=5(1+1/3) (B4)
n= 5 (1-1/5) (B.5)

The tractions obtained in eqns. (2.20-2.25) are differentiated with respect to

displacements. For monotonic loading prior to bond failure, A = Amax <1,

10 foru <0
dT, 5, "
2 = (B.6)
du, dFdlu"+Fl foru, >0
a5, s, o

dT 0 foru, < 0
= (B.7)

71217,5; forun>()



T, = |4F D b
d\ du, 5,

dT,  dF d\ ¥

i TR
dT, dF d\ Y, 1
Eu—" = a'd—)\'a;s-;'f'ap'g

'
dT, dF d\ U,

du, ~ “d\du,,
dT,  dF d\ Y
du, = “andu,B,
dr, _ dF dh i
du, ~ d\du, B,

a7, dF d\ U, 1
@, - Candns, ',

dT, { 0 foru, < 0

where

dv 1 U
&, = 75,5,
dan _ 1 Y
d, = W55,
. 1 W
du, ~ 28,8,

dF _ 27 _

a 700(7\- 1) (2)

For unloading and reloading below the previous maximum load

10631_ u,s0

aly _ n
du 1
" dTFs; u,>0
Ty _ orl

foru,,>0

188

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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—_— e R — = = = =0 (BZZ)

For loading and unloading after bond failure, A 2 1, and when a compressive

normal force is present, u, S0

dr, 61
L B.2
i 10 5; (B.23)
ar, dT,
—d-;‘—" = El;; =0 (B.24)
1 1
dT —sgn (du,) p (10%) T|2WT (sliding)
“ 0 T, <u|T, (nosliding)
ar, { 0 |TjzuT e
— = u 1 .
du, —4;1(106)858—‘ IT) <u|T,|
n
Ty (B.27)
Tay - :
1 .y
dT —sgn (du,) 1 (10%) T,| 2 p|T (sliding)
2,‘; _ { g b B 3, |Ty| 2 1|T,| (B.28)
“ 0 T, <u|T,) (nosliding)
4T, (B.29
@, 29)
a, 0 [Ty,
2-‘;' = 6 un 1 (B.30)
b (00 gs T <nT
n
If there is no normal compressive force, u,, > 0, separation occurs and
ar dar AT
no S Dy (B.31)
du, du, du,
T T dT
.&:&:;:0 (B.32)
du, du, du,
dar dT dT
b = b - b - 0 (B.33)

du du,  du,

n
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In order to form the interface element stiffness matrix,

oFN
KM = B.34
S (B.34)

where F is the force contributed by the element to degree of freedom N and uM is the
displacement at degree of freedom M, it is necessary to multiply the traction derivatives by
the area associated with the integration point to determine the force derivatives. The force
derivatives are projected to the nodes to obtain the element stiffness matrix in the n, ¢, b

coordinate system.

1 1
(k] = | ¢ (B.35)
k” kl
The submatrices k’ and IJ’ are related 6x6 matrices. The terms in thck’ submatrix are
C dT. \ dT \B
K, = La(z—-u") +b( du") AREA (B.36)
n n -
CodT, Y (dT, N\
K, = L“(H’u’) +b(—u-) AREA (B.37)
1 { ]
[ dTn A d n BT
Ky = L“(Ei‘u_) +b(a—) AREA (B.38)
b b/ J
- dT, Y dT P
Ky = Ld( " ) +d(——-u—) AREA (B.39)
n n .
" (dT,\? dT,\P
K = Ld(?u‘) +d(m—) AREA (B.40)
{ [] .
dT \ dT \B
d.o=ldl="1 +d|=-—"| |AREA (B.41)
16 “b ub
dT A (dT Y
K = [a (—u—) +b(‘—ﬁ-) ]AREA (B.42)
AN CIAY
4 [
2 AN CUAY
khy = La (Eu") +b(d—'u—) ]AREA (B.44)
b b
AR B
Ky =|d _—) +d(—~) AREA (B.45)
L ull un




B
du ) ]AREA
T B
T ) ]AREA
B
) }AREA
u
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(B.46)

(B.47)

(B.48)

(B.49)

(B.50)

(B.51)

(B.52)

(B.53)

(B.54)

(B.55)

(B.56)

(B.57)

(B.58)

(B.59)

(B.60)

(B.61)

(B.62)
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K, = | o[ 2 pwiad AREA B.63
w 2(@) (@) B2
; dT\A  (dT\P]
kSS = b(—') +a(—-—) AREA (B.64)
u, u) |
o Y * o) AREA B.65
o= o) () o
kL, = K, (B.66)
kl62 = kgs (B67)
Kes = Kag (B.68)
[ (dT,\*  (dT,\*
kL, = bb(a——%) +a(zl7;) |AREA (B.69)
[ (dT,\*  (dT,\2]
K = _b (Hu—') +a(27‘-') _AREA (B.70)
[ (dT,\*  (dT,\PT
K = b(——”) +a(—i’) AREA (B.71)
L \4U, Up ) |
Here,
1,1 11 1
4= =+ — b = = e— d = = B.72
3 zﬁ 3 2J§ 3 ( )

Also, k”,-j = - k’,-j. The stiffness terms must now be translated to the global coordinate

system.
K = s skl +ckly) + ¢ (skhy +cidy) (B.73)
K, = s(=cki, +5k,y) +c(—ckhy + skhy) (B.74)
Ky = s(skhy+ckls) +c (skhy +chs) (B.75)
14 = 14 15 224 25 .
Kl = s(—ckly +skhg) + ¢ (~ckby + skys) (B.76)



K’n = —c(~ckj + sk’,z) 45 (—ckhy + skhy)
KQA =—C (skl14+ck',5) +s(sk’24+ck125)
Kg_s = -c(—ck’l4+s 15) +s(—ck’24+s 25)
Ky = Kia
Kl = Kis
KL, = 5 (skhy + chlyg) +c (sksy + ckss)

Kﬂs = (—ckf,4 + skﬁs) +c (—-ck'54 + skss)

1 1
K5y = Ky
y |
K5, = Kas
K’ss = =C (—ckl“+sk£5) +s(-—ck’54+sk’55)
K. = k! all others
"j = ij aliothers

And finally,

m=wﬂ

where k' = -Kj;.
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(B.78)

(B.79)

(B.80)

(B.81)

(B.82)

(B.83)

(B.84)

(B.85)

(B.86)

(B.87)

(B.88)

(B.89)

(B.90)
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APPENDIX C
EXPERIMENTAL DATA

h

Material

+Ti-15V-3Cr-3Sn-3Al matrix foil

+SCS-6 Continuous fibers spaced at 128 per inch

+0.002 inch diameter molybdenum wires spaced at 5 per inch woven with fibers

+0.008 inch nominal ply thickness

+0.4 nominal fiber volume fraction

Tube Geometry
Tube # ID. # Layup | LD.(n.) | O.D.(in.) | t (in.) L (in.)
m . ——
1 N880162 [04] 1.429 1.491 0.0310 6.9

N880160 [04] 1.4249 1.4893 0.0322 7.0

N880159 {04] 1.4256 1.4910 0.0327 7.0

2
4
5 P880019 [£45] 3.9048 3.9824 0.0388 12
9 P880022 [£45]5 3.908 3.980 0.0360 11.9

10 P880023 [£45]¢ 3.9068 3.9808 0.0370 12




[04] Tube Elastic Properties
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Tube #1
Rosette R1 R2 R3 R4
E)1 (Msi) 324 30.7 323 32.1
vi2 0.282 0.263 0.333 0.289
Ex (Msi) 21.6 21.2 17.1 21.0
V21 0.187 0.207 0.140 0.193
Gy (Msi) 7.69 7.49 7.84 7.63
Tube #2
Rosette R1 R2 R3 R4* RS*
W 319 32.2 31.7 33.6 qi37.6
V12 0.251 0.293 0.290 0.98 0.275
G2 (Msi) 7.85 8.00 8.11 7.69 8.20
Tube #4
Rosette Rl R2 R3 R4* R5*
W 317 30.8 36.2 38.5=
Vi2 0.263 0.270 0.274 0.188 0.338
Gz (Msi) 7.48 7.56 7.35 8.06 8.82

* Strain gage rosette located at the end of the gage section.
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[£45], Tube Elastic Properties

Tube #5
Rosette R1 R2 R3 R4* R5*
(B, s) | 164 | 178 167 | 198 165 |
Vxy 0.433 0.459 0.351 0.370 0.418
Gyy (Msi) 8.69 9.45 8.62 8.60 8.71
Tube #9
Rosette R1 R2 R3 R4
mz 186 | 19 21.0
Vay 0.331 0.352 - -
Gyy (Msi) 9.57 9.13 - -
Tube #10
Rosette R1 R2 R3 R4* R5*
t—_—====£= —— — ﬁ
E,x (Msi) 16.1 16.7 21.1 18.5 20.3
Vxy 0.360 0.332 0.362 0.360 0.369"
G,y (Msi) 8.59 8.85 9.75 8.93 9.70
Strain Gage Gl G2 =G4$‘-T=:=
E,x (Msi) 19.8 19.8 18.1 15.1

* Strain gage rosette located at the end of the gage section.
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Failure Data

[04]) Tubes

Tube # Ultimate Stress Comments
2 T12=42 ksi Inelastic shear strains were very nonuniform
4 022=46 ksi Nonuniform inelastic transverse strains

[145] Tubes
Tube # Ultimate Stress Comments
[ 5 | o,=68ksi | Failurc occurred during uniaxial tensile loading |
9 Oy x=66 ksi Failure occurred during a hold time after the
accumulation of a large amount of creep strain
10 Gy x=08 ksi, Failure occurred during shear loading with
txy=3 ksi constant axial load
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